PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2024

(Fourth Semester)

Branch - MATHEMATICS

FUZZY SET THEORY
Time: Three Hours Maximum: 50 Marks
SECTION-A (5 Marks) Answer ALL questions ALL questions carry EQUAL marks (5 x 1 = 5)
1. The set of elements that belong to the fuzzy set \tilde{A} at least to the degree α is called the set if $A_{\alpha} = \{x \in X/\mu_{\tilde{A}}(x) \ge \alpha\}$.
(i) α -level (ii) α_1 -level (iii) $A\alpha$ -level (iv) $\tilde{A}\alpha$ -level
2. A can be written as a set of ordered tuples.
(i) set (ii) function (iii) relation (iv) binary relation
3. For every $A \in P(X)$, $Nec(A) > 0$ implies $Pos(A) = $ (i) 0 (ii) 1 (iii) 2 (iv) -1
4. The probability of a fuzzy event $P(\tilde{A})$ is defined as (i) $\int_{R^n}^{\mu_A}(x)dP$ (ii) $\int_{R^n}^{\mu_0}(x)dP$ (iii) $\int_{R^n}^{\mu_A}(x)dP$ (iv) $\int_{R^n}^{\mu_{1/x}}(x)dP$
 5. The vector-maximum problem is defined as (i) "minimum"{Z(x)/x ∈ X} (ii) "maximum"{Z(x)/x ∈ X} (iii) "minimum"{Z(x₀)/x ∈ X} (iv) "maximum"{Z(x₀)/x ∈ X}
SECTION - B (15 Marks) Answer ALL Questions ALL Questions Carry EQUAL Marks (5 x 3 = 15)
6. a) Explain the types of sets.
b) Prove that (i) $\alpha^+ A \subseteq \alpha^- A$, and (ii) $\alpha^- (\tilde{A}) \subseteq \alpha^{(1-\alpha)+} (\tilde{A})$.
7. a) Discuss fuzzy relations with example. [OR]
b) Explain fuzzy equivalence relations with suitable example.
8. a) Discuss fuzzy measure properties. [OR]
b) Explain Plausibility measure with example.
9. a) Explain the causes uncertainty. [OR]
b) Discuss probability of a fuzzy event as a scalar.
10.a) Describe symmetric fuzzy LP.

b) Explain fuzzy LP with crisp objective function.

SECTION -C (30 Marks)

Answer ALL questions ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11. a) State and prove First Decomposition Theorem.

- b) Let $f: X \to Y$ be an arbitrary crisp function. Then, prove that for any $A \in F(X)$, f fuzzified by the extension principle satisfies the equation $f(A) = \bigcup_{\alpha \in [0,1]} f(\alpha + A).$
- 12.a) Discuss binary fuzzy relations with example.

[OR]

- b) Explain in detail about reflexive, irreflexive, symmetric, anti-symmetric and transitive relations.
- 13.a) Explain probability measure with example.

- b) Distinguish between probability and possibility theory.
- 14.a) Explain the types of available information.

[OR]

- b) Explain possibility distribution with an example.
- 15.a) Solve $Max\ Z = 2x_1 + x_2$ subject to $x_1 \le 3$; $x_1 + x_2 \le 4$; $5x_1 + x_2 \le 3$ and $x_1, x_2 \geq 0.$

[OR]

b) Discuss fuzzy dynamic programming with crisp state.

END Z-Z-Z