PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2024

(Third Semester)

Branch - MATHEMATICS

FUNCTIONAL ANALYSIS

Time: Three Hours Maximum: 50 Marks

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(5 \times 1 = 5)$

Which of the following is the definition for zero operator?

(i) 0x = x

(ii) 0x = 0

(iii) Ix = x

(iv) Ix = 0

2 $||x+y||^2 + ||x-y||^2 = \dots$

(i) $||x||^2 + ||y^2||$

(ii) $2||x||^2$

(iii) $2||y^2||$

(iv) $2(||x||^2 + ||y^2||)$

3 If $\rho(x+y) \le \rho(x) + \rho(y)$, then ρ is called

(i) reflexive

(ii) chain

(iii) subadditive

- (iv) positive homogeneous
- 4 X is said to be in a normed space Z if X is isomorphic with a subspace Z.

(i) embeddable

(ii) complete

(iii) adjoint

(iv) reflexive

5 Which of the following is the condition for the contraction?

(i) $d(Tx,Ty) \le d(x,y)$

(ii) $d(Tx,Ty) \ge \alpha d(x,y)$

(iii) $d(Tx,Ty) \le \alpha d(x,y)$

(iv) $d(Tx,Ty) \le \alpha d(Tx,y)$

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$

Prove that on a finite dimensional vector space X, any norm $\|\cdot\|$ is equivalent to any other norm $\|\cdot\|_0$.

OR

- b Let T be a bounded linear operator. Then prove that the null space N(T) is closed
- 7 a If in an inner product space, $x_n \to x$ and $y_n \to y$, then prove that $\langle x_n, x \rangle \to \langle x, y \rangle$.

OR

- b Prove that an orthonormal set is linearly independent.
- 8 a If $\langle v_1, w \rangle = \langle v_2, w \rangle$ for all w in an inner product space X, then prove that $v_1 = v_2$. Also prove that $\langle v_1, w \rangle = 0$ for all $w \in X$ implies $v_1 = 0$.

OR

- b Prove that in every Hilbert space $H \neq \{0\}$, there exists a total orthonormal set.
- 9 a Prove that every Hilbert space H is reflexive.

OR

b Let $T:D(T)\to Y$ be a bounded linear operator with domain $D(T)\subset X$, where X and Y are normed spaces. Then prove that if T is closed and Y is complete, then D(T) is a closed subset of X.

Cont ...

Let X and Y be normed spaces and $T: X \to Y$ a linear operator. Then prove that T is compact if and only if it maps every bounded sequence (x_n) in X10 a onto a sequence $T(x_n)$ in Y which has a convergent subsequence.

OR

Let $T: X \to X$ be a compact linear operator and $S: X \to Y$ a bounded linear b operator on a normed space X. Then prove that TS and ST are compact.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a Prove that every finite dimensional subspace Y of a normed space X is complete. Also Prove that every finite dimensional normed space is complete.

- b Let $T:D(T)\to Y$ be a bounded linear operator, where D(T) lies in a normed space X and Y is Banach space. Then prove that T has an extension $\tilde{T}: \overline{D(T)} \to Y$ where \tilde{T} is a bounded linear operator of norm $||\tilde{T}|| = ||T||$.
- 12 a State and Prove
 - i)Schwarz inequality
 - ii) Triangle inequality

OR

- b i) If Y is a closed subspace of a Hilbert space H, then prove that $Y = Y^{\perp \perp}$ ii) Prove that for any subset $M \neq \phi$ of a Hilbert space H, the span of M is dense in H if and only if $M^{\perp} = \{0\}$.
- 13 a State and prove Riesz's theorem on functionals on Hilbert space.

- b Let $T: H_1 \to H_2$ be a bounded linear operator, where H_1 and H_2 are Hilbert spaces. Then prove that the Hilbert-adjoint operator T^* of T exists, is unique and is a bounded linear operator with norm $||T^*|| = ||T||$.
- 14 a Let (x_n) be a weakly convergent sequence in a normed space X say, $x_n \stackrel{w}{\to} x$. Then prove that
 - i) The weak limit x of (x_n) is unique.
 - ii) every subsequence of (x_n) converges weakly to x.
 - iii) The sequence $(||x_n||)$ is bounded.

- b Let $T: X \to Y$ be a bounded linear operator, where X and Y are normed spaces. Then prove that the adjoint operator T^* is linear and bounded and $||T^*|| = ||T||$.
- 15 a Let $T: X \to Y$ be linear operator. Prove that if T is compact, then so is its adjoint operator $T^*: Y' \to X'$; here X and Y are normed spaces and X' and Y' the dual spaces of X and Y.

b Let X and Y be normed spaces and $T: X \to Y$ a compact linear operator. Suppose that (x_n) in X is weakly convergent, say, $x_n \to x$. Then prove that $T(x_n)$ is strongly convergent in Y and has the limit y = Tx.

Z-Z-Z