Cont...

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2024

(Fourth Semester)

Branch - MATHEMATICS

		FLUID DYNAMICS
T	ime	: Three Hours Maximum: 50 Marks
		SECTION-A (5 Marks) Answer ALL questions ALL questions carry EQUAL marks (5 x 1 = 5)
1		The method which describes the motion of each particle of fixed identity for all time is called (i) Eulerian method (ii) Lagrangian method (iii) Navier method (iv) Bernoulli method
2		If stress is less than strain then the deformation when the force is removed. (i) increases (ii) decreases (iii) disappears (iv) none of these
3		The time dependent flow is called as (i) steady flow (ii) viscous flow (iii) unsteady flow (iv) non viscous flow
4		The ratio of dynamic pressure to the shearing stress is known as (i) Prandtl number (ii) Froude number (iii) Reynolds number (iv) Mach number
5		Von Karman integral Pohlhausen method is based on the (i) Integral theorem (ii) momentum theorem (iii) cauchy theorem (iv) Poiseuille theorem
		SECTION - B (15 Marks) Answer ALL Questions ALL Questions Carry EQUAL Marks (5 x 3 = 15)
6	a	Obtain the differential equation of stream lines. OR
	Ь	Obtain the relation between vorticity vector and average angular velocity vector.
7	a	Verify the following invariant for two dimensional stress components: $(\sigma_{xixi} - \sigma_{yiyi})^2 + 4 \sigma_{xiyi}^2 = (\sigma_{xx} - \sigma_{yy})^2 + 4 \sigma_{xy}$. OR
	b	Derive the equation of continuity for an incompressible fluid.
8	a	Derive one dimensional equation of continuity. OR
	b	Derive Euler's equation of motion and hence deduce Bernoulli equation.
9	a	Obtain the expressions for velocity distribution and shearing stress for couette flow. OR
	b	Discuss the flow between the two concentric rotating cylinders.
0	a	Derive the Von Karmen integral relation. OR
	b	Discuss momentum thickness, displacement thickness and boundary layer thickness.

SECTION -C (30 Marks)

Answer ALL questions
ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a Explain the methods of describing the fluid motion and give its merits and demerits.

OR

- b Prove that in general the movement of fluid element may consists of a translation, rotation and a rate of deformation.
- 12 a Obtain the relation between rate of strain and stress in two dimensional case.

OR

- b Derive the Navier Stokes equation of motion for a viscous incompressible fluid.
- 13 a State and prove three dimensional momentum theorem.

OR

- b State and prove Stokes theorem.
- 14 a Discuss Hagen Poiseuille flow.

OR

- b Discuss the flow between two coaxial cylinders.
- 15 a Derive Prandtl boundary layer equation in two dimensional flow.

OR

b Derive Blasius solution.

END