PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2024

(Fourth Semester)

Branch - MATHEMATICS

CONTROL THEORY

CONTROL THEORY		
Time: Three Hours Maximum: 50 Marks		
SECTION-A (5 Marks)		
		Answer ALL questions
		ALL questions carry EQUAL marks $(5 \times 1 = 5)$
1	The	system $\dot{x} = A(t)x, y(t) = H(t)x(t)$ is observable on an interval [0,T] if $y(t) =$
	H($t(t) = 0, t \in [0, T]$ implies
		(i) $x(0) = 0$ (ii) $x_0 = 0$ (iii) $x(t) = 0$ (iv) all of the above
_	**	(iii) $x(t) = 0$ (iv) all of the above
2	lfr	ank B is, then the system $\dot{x} = Ax + Bu$ is controllable.
		(i) equal to n (ii) less than n (iv) not equal to n
		(ii) greater than n (iv) not equal to n
3	If A	$= \begin{bmatrix} 1 & 5 \\ 5 & 1 \end{bmatrix} $ then the system $\dot{x} = Ax$ is
		(i) stable (ii) unstable
		(iii) asymptotically stable (iv) bounded
4	The	pair (A, B) is controllable if and only if is controllable for arbitrary
	scal	ar λ .
	((i) $(A + \lambda I, B)$ (ii) $(B + \lambda I, B)$ (iv) $(B - \lambda I, B)$
_	0.	(iv) $(B - \lambda I, B)$
5	Giv	wen the linear system $\dot{x} = A(t)x(t) + B(t)u(t)$ and the cost functional $J = \frac{1}{2}$
	$\frac{1}{2}x'$	$(T)Fx(T) + \frac{1}{2}\int_0^T [x^*(t)Q(t)x(t) + u^*(t)R(t)u(t)]dt$, there exists an optimal
	control of the form $u(t) = -R^{-1}(t)B^*(t)K(t)x(t)$ where $K(t)$ is the solution of the	
	mat	rix Riccati equation with
	(i) $K(T) = B$ (ii) $K(T) = x$
	(iii) $K(T) = u$ (iv) $K(T) = F$
		SECTION - B (15 Marks)
Answer ALL Questions		
ALL Questions Carry EQUAL Marks $(5 \times 3 = 15)$		
5	0	
)	a	State and prove Banach fixed point theorem. OR
b Consider the system $\dot{x} = A(t)x + f(t,x)$ with observation $y = H(t)x$		
		there exists a constant $c > 0$ such that $\det W(t, \theta) \ge c$ then prove that the
		system is globally observable at t.
7	a	Show that the system $\dot{x} = A(t)x + B(t)u$ is controllable on $[0, T]$ if and only if
		$M(0,T) = \int_0^T X(T,t)B(t)B^*(t)X^*(T,t)dt \text{ is positive definite.}$
		OR
	b	Verify the controllability of the system
		$\dot{x}_1 = -x_1 + x_2 + (\cos t)u_1 + (\sin t)u_2 + 10x_1/(1 + x_1^2 + x_2^2 + u_3^2)$
		$\dot{x}_2 = -x_1 - x_2 - (\sin t)u_1 + (\cos t)u_2 + x_2/(1 + x_2^2 + u_2^2 + t).$
	a	Prove that the system $\dot{x} = Ax$ is (asymptotically) stable if all the eigenvalues of

OR

b State and prove the Gronwall's inequality.

A have negative real parts.

9 a If the system $\dot{x} = Ax + Bu$, $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$ is countable, the prove that it is stabilizable.

OR

- b Show that the pair (H, A) is detectable if and only if the pair $(A^*, -H^*)$ is stabilizable.
- 10 a If K(t) is the solution of the Riccati equation $\dot{K} + K(t)A(t) + A^*(t)K(t) K(t)S(t)K(t) + Q(t) = 0$ and if K(t) = F, then prove that K(t) is symmetric for all $t \in [0, T]$.

OR

Find the optimal control u for the system $\dot{x}_1(t) = x_2(t), \dot{x}_2(t) = u(t)$ and the cost functional $J = \frac{1}{2} \int_0^\infty [x_1^2(t) + 2bx_1(t)x_2(t) + ax_2^2(t) + u^2(t)]dt$ where we assume that $a - b^2 > 0$.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

- 11 a Solve the initial value problem $\dot{x} = \begin{bmatrix} 1 & 12 \\ 3 & 1 \end{bmatrix} x$, $x(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
 - b Verify the observability of the second order equation $t^2\ddot{x} + t\dot{x} x = 0$ for the observer $y = \dot{x}$.
- 12 a Find the control u which steers the system $\ddot{x} x = u$ from $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ to $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$.

OR

- b Assume that the continuous function f satisfies the condition $\lim_{|(x,u)|\to\infty} \frac{|f(t,x,u)|}{|(x,u)|} = 0$ uniformly for $t \in I$. If the system $\dot{x} = A(t)x + B(t)u$ is completely controllable, then prove that the system $\dot{x} = A(t)x(t) + B(t)u(t) + f(t,x(t),u(t))$ is completely controllable.
- 13 a Let all the solutions of the equation $\dot{x}(t) = A(t)x(t)$ be bounded. Let

(i) $\int_0^\infty ||B(s)|| ds < \infty$,

(ii) $\lim_{t\to\infty} \int_0^t Tr[A(s)] ds > -\infty$.

Then prove that all the solutions of $\dot{x} = A(t)x + B(t)x$ are bounded.

OR

- b Show that the equilibrium solution x(t) = 0 of the following system $\dot{x}_1(t) = x_2 x_1(x_1^2 + x_2^2)$, $\dot{x}_2(t) = x_2 x_1(x_1^2 + x_2^2)$ is asymptotically stable.
- 14 a Stabilize the system $\ddot{x} x = u$ by Bass method.

OR

- b Prove that the control problem $x(0) = x_0$, $x(T) = x_1$ for the system $\dot{x} = Ax + Bu$, $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$ is solvable if and only if $x_1 e^{AT}x_0 \in C(A, B)$.
- 15 a Find the optimal control u for the second order system

 $\dot{x}_1(t) = x_2(t), \dot{x}_2(t) = u(t) \text{ and the cost functional}$ $J = \frac{1}{2} \left[x_1^2(3) + 2x_2^2(3) \right] + \frac{1}{2} \int_0^3 \left[2x_1^2(t) + 4x_2^2(t) + 2x_1(t)x_2(t) + \frac{1}{2}u^2(t) \right] dt.$

OR

b Consider the nonlinear system $\dot{x} = A(t)x(t) + B(t)u(t) + f(t,x(t))$, with the cost functional $J = \frac{1}{2}x^*(T)Fx(T) + \frac{1}{2}\int_0^T [x^*(t)Q(t)x(t) + u^*(t)R(t)u(t)]dt$ exists and if $||f(t,x) - f(t,y)|| \le a||x-y||$ where a is a positive constant. Show that the optimal control is given by $u(x(t),t) = -R^{-1}(t)B^*(t)K(t)x(t) - R^{-1}(t)B^*(t)h(t,x)$ where K(t) satisfies the Riccati equation and $\dot{h}(t,x) = -[A^*(t) - K(t)R^{-1}(t)B^*(t)]h(t,x) - K(t)f(t,x(t))$, h(T,x) = 0.

7.-7.-7. END