PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(Second Semester)

Branch- PHYSICS

THERMAL AND STATISTICAL PHYSICS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(10 \times 1 = 10)$

Module No.	Question		K	CO
	No.	Question	Level	CO
	1	Liquid thermometers are filled with a) Mercury b) alcohol c) Gallium d) Both a & b	K1	CO1
1	2	Total seebeck effect can be found as a) Total peltier effect b) Total Thomson effect c) Partly peltier and partly Thomson effect d) None of the mentioned	K2	CO1
	3	The gas with the highest critical temperature is a) H ₂ b) H _e c) N ₂ d) CO ₂	K1	CO2
2	4	The phenomena of super conductors was first discovered by a) Kammerlingh Onnes b) Neils bohr c) Richard Smalley d) Otto lehman	K2	CO2
3	5	Thermal conductivity is defined as the heat flow per unit time a) When the temperature gradient is unity b) Across the wall with no temperature c) Through a unit thickness of the wall d) Across unit area where the temperature gradient is unity	K1	CO3
3	6	As the wavelength of the radiation decreases, the intensity of the black body radiations	K2	CO3
4	7	The First Law thermodynamics expresses a) Law of conservation energy b) Law of conservation of mass c) Law of conservation of momentum d) All the above	K1	CO4
	8	Entropy is a measure of a) Perfect order b) Available energy c) Disorder d) None of the above	K2	CO4
5	9	Maxwell-Boltzmann statistics is applicable to a) identical and distinguishable particles b) identical and indistinguishable particles c) fermions d) bosons	K1	CO5
	10	The quantity e ^{-Ei/KT} is known as a) Bose Einstein factor b) Boltzmann factor c Einstein factor d) None of the above	K2	CO5

Cont...

SECTION - B (35 Marks)

Answer ALL questions ALL questions carry EQUAL Marks $(5 \times 7 = 35)$

Module No.	Question No.	Question	K Level	СО
1	11.a.	Discus the working of the electrical resistance thermometer.		
	(OR)			CO3
	11.b.	Describe the construction and working of platinum resistance thermometer.	K5	003
2	12.a.	Discuss the Thomson effect.		
	(OR)			CO3
	12.b.	Derive Van der Waal's equation.	K3	200
3	13.a.	Describe Lee's method for determination of the thermal conductivity of bad conductor.	К3	
	(OR)			CO3
	13.b.	Deduce Newton's law of cooling from Stefan's law.		
4	14.a.	Calculate the efficiency of Carnot engine working between the steam point and ice point.	= -	
	(OR)			CO4
	14.b.	What are Thermodynamic potentials? Explain their applications.		
-	15.a.	Obtain an expression for Maxwell Boltzmann distribution law.	K4	
5	(OR)			CO4
	15.b.	Explain the Photon gas.		

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks $(3 \times 10 = 30)$

Module No.	Question No.	Question	K Level	СО
1	16	Describe the construction and working of thermoelectric thermometer.	K4	CO4
2	17	Enumerate the adiabatic demagnetization of paramagnetic salt.	K4	CO4
3	18	Describe the Forbe's method.	K4	CO4
4	19	Derive Maxwell thermodynamic relations.	K5	CO3
5	20	Deduce the expression for Fermi – Dirac distribution.	K5	CO3

Z-Z-Z END