PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(Second Semester)

Branch - PHYSICS

MECHANICS & FLUID DYNAMICS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

Module No.	Question No.	Question		K Level	СО
1	1	When e < 1, the kinetic energence a). Gained c) Gained exponentially	b) Lost	K1	C01
	2	The kinetic energy of particle in collision. a). Perfectly inelastic	es is fully conserved	K2	C01
2	3	The moment of inertia of a thand radius R about any diame a). 2MR c). 2/5MR ²	nin circular disc of mass M	K1	CO2
	4	If we increase the length of s period will a). Increase c). Zero	b). Decrease d). Infinity	K2	C02
3	5	Cycle pedaling is an example	b). Couple	K1	C03
	6	What is the formula to find c a). μ =F×W c). μ =W/F	o-efficient of friction? b). μ=F/W d). μ=R/W	K2	C03
4	7	The pressure at any given po a). Atmospheric Pressure c). Differential Pressure	b). Hydrostatic Pressured). Gauge Pressure	K1	C04
	8	The principle of floatation of premise of a). Metacentre c). Below the metacentre	b). Above metacentre	K2	C04
5	9	If the Reynolds number is gr known as a). Pressure c). Momentum	b). Turbulent d). Laminar	K2	C05
	10	The degree of freedom for a a).One c). Three		K1	C05

SECTION - B (35 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 7 = 35)$

Module No.	Question No.	Question		со
1	11.a.	Write a note on law of conservation of energy and momentum with suitable examples.	K2	CO1
		(OR)		
	11.b.	Show that for a central force, the angular momentum is conserved.	K1	CO1
		Cont		

22PHU205N/22PHU205

Cont ...

	T			ont
2	12.a.	Differentiate between compound and Kater's pendulum in analysing centre of gravity 'g'.	K1	CO2
		(OR)		
	12.b.	Determine the moment of inertia of a solid sphere.	K2	CO2
	13.a.	Verify the Lami's theorem of triangle of forces.	K1	CO3
3		(OR)		
	13.b.	Elucidate the centre of gravity of solid hemisphere.	K2	CO3
	14.a.	What is the centre of pressure? Derive centre of pressure for inclined position of the plane.	K2	CO4
4		(OR)		-
	14.b.	Differentiate between laminar and turbulent flow.	K2	CO4
	15.a.	Derive the expression for Bernoullis equation.	K1	CO5
5	(OR)			
	15.b.	What are Generalized coordinates and Lagrangian coordinates?	K1	CO5

SECTION -C (30 Marks)

Answer ANY THREE questions

ALL questions carry EQUAL Marks

 $(3 \times 10 = 30)$

Module No.	Question No.	Question		СО
1	16	Explain the principle of rocket and the advantages in different stages.	K1	C01
2	17	Deduce acceleration due to gravity using vertical oscillation of spring.	K2	C02
3	18	Derive the equations of centre of gravity for hollow hemisphere and solid hemisphere.	K1	C03
4	19	Determine the metacentric height of a ship with a neat sketch.	K2	C04
5	20	Obtain the rate of flow of water using Venturimeter.	K1	CO5