Cont ...

PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(Fourth Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

		SEC	QUENCE, SER	IES AND TRIGONOME		
Time: Three Hours					Maximum: 50 Marks	
			SECTI	ON-A (5 Marks)		
				er ALL questions	20 VI VI VI VI VI	
			ALL ques	stions carry EQUAL man	rks $(5 \times 1 = 5)$	
1	1	$\lim_{n \to \infty} \frac{1}{n} = $				
	-	→∞ n		(iii) 0	(iv) -1	
2	li	$\min_{n\to\infty} (-1)^{n=1}$	·			
		i) -1		(iii) 0	(iv) <i>n</i>	
3	Σ	$\lim_{n=1}^{\infty} \frac{x^n}{n}$ is absorbed.	olutely converge	ent only for		
	(j	$(i) - \infty < x < i$	< ∞	(ii) $-1 < x < 1$	l .	
	(i	(ii) $-2 < x < 0$: 2	(iv) $-1 < x <$	0	
4	ei	$\theta = \cos\theta + i$	sinθ is known a	as .		
					(ii) Exponential formula	
		ii) cosine for		(iv) sine formu	la	
5	t.	an ⁻¹ v lies he	etween			
5			(ii) $\pm \frac{\pi}{2}$	· (iii)±π	(iv) $\pm 2\pi$	
	,	<i>y</i> — 4	2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, - , - <u></u>	
				ON - B (15 Marks)		
				er ALL Questions ions Carry EQUAL Mar	ks $(5 \times 3 = 15)$	
6	a	If the sean				
U	а	If the sequence of real numbers $\{s_n\}_{n=1}^{\infty}$ is convergent, then prove the $\{s_n\}_{n=1}^{\infty}$ is bounded.				
		Chin=1	Ol	R		
	b	If $\{s_n\}_{n=1}^{\infty}$	is a sequence of	f non negative numbers a	and if $\lim_{n\to\infty} s_n = L$, then	
		show that L	≥ 0 .			
7	a	If the sequ	uence of real	numbers $\{s_n\}_{n=1}^{\infty}$ conve	rges, then prove tha	
		$\{s_n\}_{n=1}^{\infty}$ is a	Cauchy sequen			
		D 11 1 1	O]	R		
	b		$\lim_{n\to\infty}\frac{2n}{n+4n^{1/2}}=2.$			
8	a	If $\sum_{n=1}^{\infty} a_n$	is a convergent	series, then prove that li	$\lim_{n\to\infty}a_n=0.$	
			0			
h	(i)	Show that	if Σ^{∞} a conv	erges absolutely then both	th $\sum_{n=1}^{\infty} p_n$ and $\sum_{n=1}^{\infty} q_n$	

(ii) if $\sum_{n=1}^{\infty} a_n$ converges conditionally, then both $\sum_{n=1}^{\infty} p_n$ and $\sum_{n=1}^{\infty} q_n$ diverge.

converge and

9 a Develop $sin^7\theta$ into a series of sines of multiples of θ .

OR

- b Solve $\lim_{\theta \to 0} \frac{n \sin \theta \sin n\theta}{\theta (\cos \theta \sin n\theta)}$.
- 10 a Calculate the sum of series $\cos^2 x + \cos^2 (x + y) + \cos^2 (x + 2y)$ up to n terms.

OR

b State and prove Gregory's series.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

- 11 a (i) Define monotone sequence.
 - (ii) Justify that if the sequence of real numbers $\{s_n\}_{n=1}^{\infty}$ is convergent to L, then $\{s_n\}_{n=1}^{\infty}$ cannot also converge to a limit distinct from L.

OR

- b (i) Prove that a nondecreasing sequence which is not bounded above diverges to infinity.
 - (ii) Show that the sequence $\{(1+\frac{1}{n})^n\}_{n=1}^{\infty}$ is convergent.
- 12 a If $\{s_n\}_{n=1}^{\infty}$ and $\{t_n\}_{n=1}^{\infty}$ are sequence of real numbers, if $\lim_{n\to\infty} s_n = L$ and if $\lim_{n\to\infty} t_n = M$ then, justify that $\lim_{n\to\infty} (s_n + t_n) = L + M$.

OR

- b Prove that any bounded sequence of real numbers has a convergent subsequence.
- 13 a (i) Define class l^2 .
 - (ii) State and prove Schwarz inequality.

OR

- b Show that if $\sum_{n=1}^{\infty} a_n$ is a divergent series of positive numbers, then there is a sequence $\{\varepsilon_n\}_{n=1}^{\infty}$ of positive numbers which converges to zero but for which $\sum_{n=1}^{\infty} \varepsilon_n a_n$ still diverges.
- 14 a (i) If $\tan(x + iy) = u + iv$, prove that $\frac{u}{v} = \frac{\sin 2x}{\sinh 2y}$.
 - (ii) Seperate into real and imaginary parts of tan h(1 + i).

OR

- b Express $\cos 8\theta$ in terms of $\sin \theta$.
- 15 a (i) State and prove the general value of logarithm of x + iy.
 - (ii) Find the sum of the series

$$cosec\theta + cosec 2\theta + cosec 2^2\theta + \cdots + cosec 2^{n-1}\theta$$
.

OR

b Find the sum to infinity the series

$$\cos\alpha + \frac{1}{2}\cos(\alpha + \beta) + \frac{1.3}{2.4}\cos(\alpha + 2\beta) + \cdots$$