PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(Sixth Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS <u>DISCRETE MATHEMATICS AND GRAPH THEORY</u>

Time:	Three Hours	Maximu	Maximum: 50 Marks	
		I-A (5 Marks)		
		LL questions	(5 1 5)	
	ALL questions	carry EQUAL marks	$(5 \times 1 = 5)$	
1	A is a compound statement which is true for every value of the individual statements.			
	(i) negation	(ii) tautology		
	(iii) contradiction	(iv) equivalence		
2	A compound proposition that is neither a tautology nor a contradict			
	(i) Inference	(ii) Equivalence		
	(iii) Condition	(iv) Contingency		
3	A relation R on a set A is said to be symmetric and transitive			
	(i) binary relation	(ii) an equivalence rel		
	(iii) composite relation	(iv) an equivalent rela		
4	A graph is a graph in which (i) regular (iii)multi			
5	A tree with four vertices hasec	lges.		
	(i) 2 (ii) 4	/*	v) 5	
	SECTION	- B (15 Marks)		
		LL Questions		
	ALL Questions	Carry EQUAL Marks	$(5 \times 3 = 15)$	
6 a	Prove $(P \to Q) \Leftrightarrow (\neg P \lor Q)$. OR			
b		of $P \wedge (P \rightarrow Q)$.		
7 a	Show that $\neg (P \land Q)$ follows from $\neg P \land \neg Q$.			
	OR			
b	Show that $S \vee R$ is tautologically in	implied by $(P \vee Q) \wedge (P \to R)$	$\land (Q \to S).$	
8 a	Let $X=\{1,2,3,4\}$ and $R=\{\langle x,y\rangle$	x>y. Draw the graph of	R and also give its	
0 4	matrix.			
	OR			
b	Let $X = \{1, 2,, 7\}$ and $R = \{\langle x, y \rangle\}$	\rangle x-y is divisible by 3}.	Show that R is an	
	equivalence relation.			
0	D. d. thhan afrontians	of odd degree in a graph is	always even	
9 a	OR			
b	Prove that a graph G is discon- partitioned into two nonempty, on no edge in G whose end vertex is	lisjoint subsets V ₁ and V ₂ si	uch that there exists	

10 a Prove that in a complete graph with n vertices there are (n-1)/2 edge-disjoint Hamiltonian circuits, if n is an odd number ≥3.

OR

b Prove that a tree with n vertices has n-1 edges.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a Obtain the principal disjunctive normal form of $P \to ((P \to Q) \land \neg (\neg Q \lor \neg P))$.

OR

- b Obtain the principal conjunctive normal form of $(P \to R) \land (Q \leftrightarrow P)$.
- 12 a Show that the following are inconsistent.
 - 1) If Jack misses many classes through illness, then he fails high school.
 - 2) If Jack fails high school, then he is uneducated.
 - 3) If Jack reads a lot of books, then he is not uneducated.
 - 4) If Jack misses many classes through illness and reads a lot of books.

OR

- b Show that $(x)(P(x) \lor Q(x)) \Rightarrow (x)P(x) \lor (\exists x)Q(x)$.
- 13 a Let R and S be two relations on a set of positive integers I: $R = \{\langle x, 2x \rangle \mid x \in I\}$ $S = \{\langle x, 7x \rangle \mid x \in I\}$. Find $R \circ S$; $R \circ R$; $R \circ R \circ R$ and $R \circ S \circ R$.

OR

- b Let f(x) = x+2, g(x) = x-2, and h(x) = 3x for $x \in R$, where R is the set of real numbers. Find $g \circ f$; $f \circ g$; $f \circ f$; $g \circ g$; $f \circ h$; $h \circ g$; $h \circ f$ and $f \circ h \circ g$.
- 14 a Explain Konigsberg Bridge problem.

OR

- b Prove that a simple graph with n vertices and k components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges.
- 15 a Prove that a given connected graph G is an Euler graph if and only if all vertices of G are of even degree.

OR

b Prove that every tree has either one or two centers.

END