Cont...

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2024

(Sixth Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

COMPLEX ANALYSIS

Tim	e: Th	ree Hours	Maximum: 50 Marks
SECTION-A (5 Marks) Answer ALL questions ALL questions carry EQUAL marks (5 x 1 = 5)			
1		the limit of a function $f(z)$ exists at a point z_o is If the limit of a function $f(z)$ exists at a point z_o is	(iv) not unique
2	У	set of points $z = (x, y)$ in the complex plane is said to be an $y(t)$ where $y(t)$ and $y(t)$ are continuous functions of the result of $y(t)$ and $y(t)$ are continuous functions of the result of $y(t)$ are continuous functions of the result of $y(t)$ are continuous functions of $y(t)$ are continuous functions of the result of $y(t)$ are continuous functions of $y(t)$ and $y(t)$ are continuous functions of $y(t)$ are continuous functions of $y(t)$ and $y(t)$ ar	eal parameter t.
3	to (i)	a function f is analytic at a given point, then its of all or oo. neighborhood (ii) derivatives ii) antiderivatives (iv) values	rders are analytic there
4	(i)	the function $\frac{z+1}{z^3(z^2+1)}$ has isolated singular points at (ii) $z=0$ and $z=\pm 1$ (ii) $z=i$ and $z=\pm 1$ (ii) $z=\pm 2$ and $z=\pm i$ (iv) $z=0$ and $z=\pm i$	
5		the polynomial $f(z) = z^3 - 8$ has a zero of order $m = $ a 1 (ii) 3 (iii) 2	
SECTION - B (15 Marks)			
Answer ALL Questions ALL Questions Carry EQUAL Marks (5 x 3 = 15)			
6	a	Explain about the stereographic projection. OR	
	b	Show that the function $f(z) = z^2$ is differentiable everywhen	ere and also find $f'(z)$.
7	a	Evaluate the integral $\int_0^{\pi/4} e^{it} dt$. OR	
	b	Let C be the arc of the circle $ z =2$ from $z=2$ to $z=$ quadrant then show that $ \int_C \frac{z+4}{z^3-1} dz \le \frac{6\pi}{7}$.	2i that lies in the first
8	a	State and prove Liouville's theorem. OR	
	b	Find the Maclaurin series expansion of the function $f(z) =$	$\sin z \ (z < \infty).$
9	a	State and prove Cauchy's Residue theorem. OR	a312a
	b	Determine the order m of each pole for the function $f(z)$	$z = \frac{z + zz}{(z - i)^3}$ and find the
		corresponding residue B.	

10 a Find the residue of the function $f(z) = \frac{\tan hz}{z^2}$ at $z = \frac{\pi i}{2}$.

OR

b Evaluate the integral $\int_0^\infty \frac{x^2}{x^6+1} dx$.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a State and prove the sufficient conditions for differentiability.

OR

- b Prove that if f'(z) = 0 everywhere in a domain D, then f(z) must be constant throughout D.
- Suppose that a function f(z) is continuous on a domain D. If any one of the following statements is true, then so are the others:
 - (i) f(z) has an antiderivative F(z) throughout D;
 - (ii) the integrals of f(z) along contours lying entirely in D and extending from any fixed point z_1 to any fixed point z_2 all have the same value, namely $\int_{z_2}^{z_1} f(z) dz = F(z)\Big|_{z_1}^{z_2} = F(z_2) F(z_1) \text{ where } F(z) \text{ is the antiderivative in statement (i).}$
 - (iii) the integrals of f(z) around closed contours lying entirely in D all have value zero.

OR

b Let f be analytic throughout a closed region R consisting of the points interior to a positively oriented simple closed contour C together with the points on C itself. For any positive number \in , the region R can be covered with a finite number of squares and partial squares, indexed by $j = 1, 2, \ldots, n$, such that in each one there is a fixed point z_j for which the inequality

$$\left|\frac{f(z)-f(z_j)}{z-z_j}-f'(z_j)\right|<\in$$

is satisfied by all points other than z_i in that square or partial square.

13 a State and prove Laurent's theorem.

OR

- b State and prove maximum modulus principle.
- 14 a Evaluate the integral $\int_C \frac{dz}{z(z-2)^4}$ where C is the positively oriented circle |z-2|=1.
 - An isolated singular point z_o of a function f is a pole of order m if and only if f(z) can be written in the form $f(z) = \frac{\phi(z)}{(z-z_o)^m}$, where $\phi(z)$ is analytic and nonzero at z_o . Moreover, $z_o = z_o =$
- Let a function f be analytic at a point z_o . It has a zero of order m at z_o if and only if there is a function g, which is analytic and nonzero at z_o , such that $f(z) = (z z_o)^m g(z)$.

OR

Z-Z-Z

b State and prove Jordan's lemma.