Cont... # PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) ### **BSc DEGREE EXAMINATION MAY 2024** (Fifth Semester) #### Branch - CHEMISTRY # INORGANIC CHEMISTRY - I | | | INORGANIC CHEMIS | IRY-I | | | |------|---|--|---|---|--| | , | Time: Th | nree Hours | Maximum: 50 Marks | | | | | | SECTION-A (5 Mar
Answer ALL question
ALL questions carry EQUA | ons | $(5 \times 1 = 5)$ | | | 1. | (i) [C | tich of the following complex shows optical isomerism? $ [\text{Co}(\text{CN})_6]^{3^{\text{-}}} \qquad \qquad (\text{ii}) \ [\text{Cr}(\text{C}_2\text{O}_4)_3]^{3^{\text{-}}} \\ (\text{IznCl}_4]^{2^{\text{-}}} \qquad \qquad (\text{iv}) \ [\text{Cu}(\text{NH}_3)_4]^{2^{\text{+}}} $ | | | | | 2 | Co ^{3+.} (i) oc | The formation of the complex ion [Co(NH ₃) ₆] ³⁺ involves sp ³ d ² hybridization of Co ³⁺ . Hence, the complex ion should possess (i) octahedral geometry (iii) square planar geometry (iv) tetragonal geometry | | | | | 3 | (i) d 6 | Which of the following configuration shows JahnTeller distortion (i) d ⁶ (low spin) (ii) d ¹⁰ (iii) d ⁵ (high spin) (iv) d ⁴ (low spin) | | | | | 4 | | | (ii) O ₂ transport
(iv) Oxidation of al | i) O ₂ transport
v) Oxidation of alkene | | | 5 | (i) Ni | th carbonyl has sp ³ hybridization?
(CO) ₄
Fe(CO) ₅ | (ii) Cr(CO) ₆
(iv) V(CO) ₆ | | | | | | SECTION - B (15 Ma
Answer ALL Question
ALL Questions Carry EQU | ons | $(5 \times 3 = 15)$ | | | 6 a) | | Analyze i) Most of the transition metals are paramagnetic ii) Compounds of transition metals are generally colored. | | | | | | b) | OR Sketch all possible geometrical and optic [Co(en) ₃] ³⁺ | cal isomer of [Co(en | $(2)_2Cl_2]^+$ and | | | 7 | a) Distinguish between i) High spin and low spin complexes ii) Inner and outer orbital complexes OR | | | | | | | b) | Calculate CFSE for d ⁵ and d ⁶ low spin and high spin complexes. | | | | | 8. | a) Bring out the difference between VBT and CFT. OR | | | | | | | b) | Explain the causes of tetragonal distortion in transition metal complexes. | | | | | 9. | a) | OR | | | | | | b) | Sketch and predict function of 4Fe-4S for | | | | | 10 | a) | Classify carbonyls with suitable example. OR | | | | | | b) | Examine the bonding feature of sodium | nitroprusside | | | ## SECTION -C (30 Marks) | Answer ALL questions | | |---------------------------------|---------------------| | ALL questions carry EQUAL Marks | $(5 \times 6 = 30)$ | - 11. a) Explain various types of structural isomerism with suitable example. OR - b) Out line various applications of chelate complexes. - 12 a) Analyze splitting of d-orbitals in octahedral filed - b) Justify: i) [NiCl₄]²⁻ is paramagnetic while [NiCN₄]²⁻ is diamagnetic (4 Marks) - ii) Mention the electronic distribution of low and high spin Fe³⁺ complexes. (2 Marks) - 13. a) Describe the polarization theory of trans effect. Give its limitation. OR - b) Explain the Jahn-Teller distortion in [Cu(H₂O)₆] ²⁺. - 14. a) Discuss the mechanism of oxygen transport by haemoglobin. (OR) - b) Outline the structural features and function of vitamin B₁₂. - a) Explain the bonding and structure of the following carbonyls (3+3 Marks) i) Ni(CO)₄ ii) Cr(CO)₆ (OR) - b) Describe the preparation and structure of ferrocene. END