Maximum: 50 Marks

Cont...

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2023

(Second Semester)

Branch - MATHEMATICS

MEASURE THEORY

Time: Three Hours

	Ans	ETION-A (5 Marks) swer ALL questions ns carry EQUAL marks	$(5 \times 1 = 5)$
1	$m^*(\phi) = \dots$ (i) 0 (iii) 1	(ii) 2 (iv) φ	
2	A non-negative finite valued different values, is called (i) measurable (iii) Riemann integrable	function $\phi(x)$, taking only a fi (ii) continuous (iv) simple	nite number of
3	A ring is called if it is σ (i) μ -ring (iii) σ -ring	closed under the formation of c (ii) hereditary (iv) outer measure	ountable unions.
4	$ f _p = \dots$ (i) $(\int f ^p d\mu)$ (iii) $(\int f d\mu)^{1/p}$	(ii) $(\int f ^p d\mu)^{1/p}$ (iv) $(\int f d\mu)$	
5	A is a with respect to (i) measurable set (iii) countable set	to ν if it is a positive set with re (ii) positive set (iv) negative set	espect to $-v$.
	An	TION - B (15 Marks) swer ALL Questions ions Carry EQUAL Marks	$(5 \times 3 = 15)$
6	a Prove that every interval is measurable. OR		
	b If f is a measurable function	and $f = g$ a.e, then prove that g	g is measurable.
7	a State and prove Lebesgue's Monotone Convergence theorem. OR b Let f be an integrable function. Then prove that af is integrable and $\int af dx = a \int f dx$		
8		OR	
-	b If f is a measurable function then prove that g is measura	and $f = g$ a.e (μ) , where μ is a colline.	complete measure,

9 a State and prove Minkowski's inequality.

OR

- b State and prove Jensen's inequality.
- 10 a Prove that a countable union of sets positive with respect to a signed measure ν is a positive set.

OR

b Write a note on Jordan decomposition.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a Prove that the outer measure of an interval equals its length.

OR

- b Let c be any real number and let f and g be real valued measurable functions defined on the same measurable set E. Then prove that f+c, cf, f+g, f-g and fg are also measurable.
- 12 a State and prove Fatou's lemma.

OR

- b Let f be a bounded function defined on the finite interval [a,b], then prove that f is Riemann integrable over [a,b] if and only if it continuous a.e.
- 13 a If μ is a measure on a σ -ring S, then prove that the class \overline{S} of sets of the form $E\Delta N$ for any sets E,N such that $E\in S$ while N is contained in some set in S of zero measure, is a σ -ring and the set function $\overline{\mu}$ defined by $\overline{\mu}(E\Delta N) = \mu(E)$ is a complete measure on \overline{S} .

OR

b Prove that the measurability of a function f is equivalent to

(i) $\forall \alpha, \{f(x) \geq \alpha\} \in S$

(ii) $\forall \alpha, \{f(x) < \alpha\} \in S$ (iii) $\forall \alpha, \{f(x) \le \alpha\} \in S$

where S is a σ algebra.

- 14 a i) Let $f,g \in L^p(\mu)$ and let a,b be constants. Then prove that $af + bg \in L^p(\mu)$ (2)
 - ii) State and prove Holder's inequality.

(4)

OR

- b If $1 \le p < \infty$ and $\{f_n\}$ is a sequence in $L^p(\mu)$ such that $\|f_n f_m\|_p \to 0$ as $n, m \to \infty$, then prove that there exists a function f and a subsequence $\{n_i\}$ such that $\lim f_{n_i} = f$ a.e. Also prove that $f \in L^p(\mu)$ and $\|f_n f\|_p = 0$
- 15 a State and prove Radon-Nikodym theorem.

OR

b Let v be a signed measure on [[X,S]]. Let $E \in S$ and v(E) > 0. Then prove that there exists A, a set positive with respect to v, such that $A \subset E$ and v(A) > 0.

END