Cont...

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2023

(Fourth Semester)

Branch - MATHEMATICS

MATHEMATICAL METHODS

Time:	Three Hours	Maximum: 50 Marks
	SECTION-A (5 Marks) Answer ALL questions ALL questions carry EQUAL marks	$(5 \times 1 = 5)$
1	A complex-valued function K(s,t) is called if H where * denotes complex conjugate. (i) separable (ii) symmetric (iv) skew-symmetric (iv) sk	
2	If $g(s) = \lambda \int_0^{\pi} (\sin s \sin 2t)g(t)dt$ has eigen value (i) No (ii) two (iii) one (iv) none of the	ese
3	Initial value problem is reduced to integral initial conditions. (i) Fredholm Type (ii) Volterra T (iv) both	
4	The line of quickest descent is a (i) cardiod (ii) cycloid (iii) catenoid (iv) straight line	
5	The slope of the tangent line $p(x,y)$ to the curve of the family $y = y(x,C)$ that passes through the point (x,y) is called the at the point (x,y) . (i) central field (ii) field of extremals (iv) family of straight lines	
	SECTION - B (15 Marks) Answer ALL Questions ALL Questions Carry EQUAL Marks	
6	 a) Solve the Fredholm integral equation g(s) = s + (OR) b) State and Prove Fredholm Alternative Theorem. 	$\lambda \int_0^t (st^2 + s^2t) \ g(t) dt.$
7	a) Find the Neumann series for the solution of the integral $g(s) = (1+s) + \lambda \int_0^s (s-t)g(t)dt$.	•
	b) Solve the integral equation $g(s) = f(s) + \lambda \int_0^1 (e^{s-t})^s dt$ resolvent kernal.	f(t)g(t)dt and evaluate the
8	a) Reduce the Initial value problem $y''(s)+\lambda y(s)=F(s)$ with the initial condition $y(0)=1,y'(0)=0$ to a volterra integral equation. (OR)	
	b) Solve the Abel's Integral equation $f(s) = \int_0^s \frac{g(t)}{(s-t)^{\alpha}} dt$,0<α<1.

Cont...

- 9 State and prove the fundamental Lemma of calculus of variations. (OR)
 - On what curves can the functional $V[y(x)] = \int_0^1 (y'^2 + 12xy) dx$; y(0) = 0, b) y(1) = 1 be extremized?
- Is the Jacobi condition fulfilled for the extremal of the functional $V[y(x)] = \int_0^a (y'^2 - y^2) dx$ that passes through the points A(0,0) and B(a,0)?
 - b) Test for an extremum the functional $V[y(x)] = \int_0^a y'^3 dx$; y(0) = 0 y(a) = b, a > 0, b > 0.

SECTION -C (30 Marks) Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

- 11 a) Find the eigenvalues and eigen functions of the homogeneous integral equation $g(s) = \lambda \int_1^2 [st + (1/st)]g(t)dt$.
 - Solve the integral equation $g(s) = f(s) + \frac{1}{\pi} \int_0^{2\pi} \sin(s+t) g(t) dt$ possess b) no solution for f(s) = s, but that it possesses infinitely many solutions when f(s) = 1.
- Solve the integral equation $g(s)=(e^s-s)-\int_0^1 s(e^{st-1})g(t)dt$ 12 a) approximation method.
 - (OR) Find the resolvent kernel for the integral equation b) $g(s) = f(s) + \lambda \int_{-1}^{1} (st + s^2t^2)g(t) dt$. Also find the solution when $D(\lambda) = 0$.
- 13 State and solve the Transverse oscillation problem of a homogeneous a) elastic bar.

- Solve the Abel's integral equation $f(s) = \int_{s}^{b} \frac{g(t)}{[h(t) h(s)]^{\alpha}}$, $0 < \alpha < 1$, a < s < b. b)
- 14 Derive Euler's equation. a)

(OR).

- State and Prove Brachistrone problem. b)
- 15 Discuss briefly about transforming the Euler equations to the canonical form. a)
 - Derive Hamilton-Jacobi equation. b)

Z-Z-Z

END