PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION MAY 2023

(Fourth Semester)

Branch - MATHEMATICS

CONTROL THEORY

Time: Three Hours Maximum: 50 Marks

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(5 \times 1 = 5)$

- 1. Let X be a real Banach space, $M \subset X$ a nonempty closed bounded convex subset and $F: M \to M$ be compact. Then F has a fixed point. This is a statement of
 - Leray-Schauder Theorem
- (ii) Banach fixed point theorem
- (iii) Brouwer fixed point theorem
- (iv) Schauder theorem
- 2. If rank B=n, then the system $\dot{x} = Ax + Bu$ is -
 - stable

(ii) unstable

(iii) controllable

- (iv) completely controllable
- The stability of the system $\dot{x} = Ax$, when $A = \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$ is (i) unstable (ii) stable 3

- (iii) asymptotically stable
- (iv) none of these
- The pair (H, A) is detectable if and only if the pair $(A^*, -H^*)$ is ----4
 - stabilizable

- (ii) controllable
- (iii) asymptotically stable
- (iv) unstable
- 5 When will you say that the extremum of Hamiltonian to be minimum with respect to u(t)
 - $(H_u)_{m\times m}$ is positive definite
- (ii) $(H_{uu})_{m \times m}$ is positive definite
- (iii) $(H_{uu})_{m \times m}$ is negative definite
- (iv) $(H_u)_{m \times m}$ is negative definite

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks

 $(5 \times 3 = 15)$

Solve the initial value problem $\dot{x} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} x, x(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. 6

The observed linear system $\dot{x} = A(t)x$, y(t) = H(t)x(t) is observable on b [0, T] if there are distinct points $s_1, s_2, ..., s_k \varepsilon [0, T]$ such that

$$rankV(s_1, s_2, ..., s_k, 0) = n, \text{ where } V(s_1, s_2, ..., s_k, 0) = \begin{pmatrix} H(s_1)X(s_1, 0) \\ H(s_2)X(s_2, 0) \\ \vdots \\ H(s_k)X(s_k, 0) \end{pmatrix}$$

7 The system $\dot{x} = A(t)x + B(t)u$, $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$ and A(t) and B(t) are $n \times n$ and $n \times m$ continuous matrices on [0, T] respectively is controllable on [0,T] if and only if controllability Grammian $M(0,T) = \int_0^T X(T,t)B(t)B^*(t)X^*(T,t)dt$ is positive definite.

Consider the system governed by the equations b

$$\dot{x_1} = -3x_1 - 2x_2 + u_1$$
; $\dot{x_2} = \dot{x_1} + u_2$.

8 a If all the characteristic roots of A have negative real parts and B(t) satisfies the condition $\lim_{t\to\infty} ||B(t)|| = 0$ then prove that all the solutions of the system $\dot{x} = Ax + B(t)x$ tend to zero as $t \to \infty$.

b Determine the stability or instability of the system $\dot{x} = Ax$ when

$$A = \begin{bmatrix} -1 & 0 & 0 \\ -2 & -1 & 2 \\ -3 & -2 & -1 \end{bmatrix}.$$

The pair (A + BK, B) is controllable if and only if the pair (A, B) is 9 a controllable.

OR

- The time invariant system $\dot{x} = A(t)x + B(t)u$, $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$ is controllable h if and only if there exist $m \times n$ matrices K_1, K_2 for which the matrix $I - e^{-(A+BK_2)T}e^{(A+BK_1)T}$ is invertible.
- If $u(t) = -R^{-1}(t)B^*(t)K(t)x(t)$ then prove J attains a local minimum. 10 a
 - If x(t) and p(t) are the solutions of the canonical equations b. $\begin{bmatrix} \dot{x}(t) \\ \dot{p}(t) \end{bmatrix} = \begin{bmatrix} A(t) & -S(t) \\ -Q(t) & -A^*(t) \end{bmatrix} \begin{bmatrix} x(t) \\ p(t) \end{bmatrix} \text{ and if } p(t) = K(t)x(t) \text{ for all } t\varepsilon[0,T]$ and all x(t), then prove K(t) must satisfies the equation $K(t) + K(t)A(t) + A^*(t)K(t) - K(t)S(t)K(t) + Q(t) = 0.$

SECTION -C (30 Marks) Answer ALL questions

 $(5 \times 6 = 30)$ ALL questions carry EQUAL Marks

Solve the initial value problem 11

$$\dot{x}(t) = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ e^t \cos 2t \end{bmatrix}, x(0) = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, x(t) = (x_1(t), x_2(t), x_3(t))^*.$$

- Let A(t) be an $n \times n$ matrix that is continuous on a closed bounded b interval J and let $f \in L_n^2(J)$. Given $t_0 \in J$ and $x_0 \in \mathbb{R}^n$ there exists a unique solution x(t) of $\dot{x}(t) = A(t)x(t) + f(t)$ on the interval J with $x(t_0) = x_0$.
- Assume that the continuous function f satisfies the condition 12 a. $\lim_{|(x,u)|\to\infty}\frac{|f(t,x,u)|}{|(x,u)|}=0$

Uniformly for $t \in I$. If system $\dot{x} = A(t)x + B(t)u$ is completely controllable, then prove the system $\dot{x}(t) = A(t)x(t) + B(t)u(t) + f(t,x(t),u(t))$ is completely controllable.

Verify the controllability of the system b

$$\dot{x}_1 = -x_1 + x_2 + (cost)u_1 + (sint)u_2 + \frac{10x_1}{(1+x_1^2 + x_2^2 + u_1^2)},$$

$$\dot{x}_2 = -x_1 - x_2 + (cost)u_2 - (sint)u_1 + \frac{x_2}{(1+x_2^2 + u_2^2 + t)}$$

State and prove Gronwall's Inequality. 13

- Suppose that the function $\frac{g(x)}{\|x\|}$ is a continuous function of x which tends to b zero for x=0. Then the solution x(t) = 0 of x = Ax + g(x) is asymptotically stable if the solution x(t) = 0 of the linearized equation $\dot{x} = Ax$ is asymptotically stable.
- If the system $\dot{x} = A(t)x + B(t)u$, $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$ is controllable, then prove it is 14 stabilizable.

- Let C(A,B) have dimension $k \leq n$ and let P be any nonsingular matrix such that b the vectors in its first k rows $p_1, p_2, \dots p_k$ form a basis for C(A,B). Then verify the change of variable x = Py carries into $\dot{y} = \hat{A}y + \hat{B}u$ which has decomposition $\begin{bmatrix} \dot{y}_1 \\ \dot{y}_2 \end{bmatrix} = \begin{bmatrix} A_1 & A_3 \\ 0 & A_2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} + \begin{bmatrix} B_1 \\ 0 \end{bmatrix} u$. Moreover, the k-dimensional system $y_1 = A_1 y_1 + B_1 u$ is controllable.
- Find the optimal control u for the nonlinear scalar system $\dot{x} = -\frac{1}{2}x + u + \frac{1}{50}tan^{-1}x \text{ with cost functional } J = \frac{1}{2}\int_0^1 [2x^2 + u^2]dt.$ 15
 - Find the optimal control u for the second order system $\dot{x_1}(t) = x_2(t)$; $\dot{x_2}(t) = u(t)$ b. with cost functional functional $J = \frac{1}{2} \left[x_1^2(3) + 2x_2^2(3) \right] + \frac{1}{2} \int_0^3 \left[2x_1^2(t) + 4x_2^2(t) + 2x_1(t)x_2(t) + \frac{1}{2}u^2(t) \right] dt.$