PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MA DEGREE EXAMINATION MAY 2023

(Second Semester)

Branch - ECONOMICS

MATHEMATICAL ANALYSIS / MATHEMATICAL METHODS

Time: Three Hours Maximum: 50 Marks

SECTION-A (5 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(5 \times 1 = 5)$

- 1 A is a 3 x 4 real matrix and Ax = b is an inconsistent system of equations. The highest possible rank of A is
 - (i) 1

(ii) 2

(iii) 3

- (iv) 4
- What will be the point of maximum of the function $2x^3 + 3x^2 36x + 10$?
 - (i) -1

(ii) -2

(iii) -3

- (iv) -4
- 3 If $z=3xy+4x^2$, what is the value of $\partial z/\partial x$?
 - (i) 3y+8x

(ii) $3x+4x^2$

(iii) 3xy+8x

- (iv) 3y+3x+8x
- 4 What is the degree of differential equation $(y^{3})^{2} + (y^{3})^{3} + (y^{3})^{4} + y^{5} = 0$?
 - (i) 2

(ii) 3

(iii) 4

- (iv) 5
- 5 If $\int 2^x dx = f(x) + C$, then f(x) is

(i) 2^x

(ii) $2^x \log 2$

(iii) $2^x / \log 2$

(iv) $2^{x+1}/x+1$

SECTION - B (15 Marks)

Answer ALL Questions

ALL Questions Carry **EQUAL** Marks

 $(5 \times 3 = 15)$

6 a
$$\text{Let A} = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 4 \\ 3 & -1 \end{pmatrix} \text{Calculate A} + B.$$
OR

- b State the uses of mathematical economics.
- 7 a Find the derivative of the function $f(x) = 6x^2 4x$.

OF

- b Suppose a company's demand function is D(p)=100-p2, and the company's current price is \$5. What will happen to revenue if they raise the price \$0.05?
- 8 a Determine the partial derivative of the function: f(x,y) = 3x + 4y.

OR

b Show the conditions of maxima and minima.

Cont...

22ECP207/19ECP07

Cont...

9 a Explain the definition of differential equation.

OR

- b Produce the definition of exact differential equation.
- 10 a Solve the integral of $\cos^2 n$ with respect to n.

OR

b Find the integral parts $\int \log x \, dx$.

SECTION -C (30 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 6 = 30)$

11 a Solve the following system of linear equations using matrix method:

$$3x + y + z = 1$$
, $2x = 0$, $5x + y + 2z = 2$

OR

b Solve, by Cramer's rule, the system of equations.

$$x_1 - x_2 = 3$$
, $2x_1 + 3x_2 + 4x_3 = 17$, $x_2 + 2x_3 = 7$.

12 a Find the local maxima and minima of the function $(x_1)^{-2} + (x_2)^{-3} + (x_3)^{-3} + (x_4)^{-3} + ($

 $f(x) = 3x^4 + 4x^3 - 12x^2 + 12.$

OR

- b Elucidate the necessary and sufficient conditions for optimization.
- 13 a Find the total differential coefficient of the function x^2y with respect to x where $x^2 + xy + y^2 = 1$.

OR

- b Invent the types and limits of derivatives.
- 14 a Find the particular solution of the differential equation $dy/dx = -4xy^2$ given that y=1 and x=0.

OR

- b Enumerate the types of differential equations.
- 15 a Design the various methods of integration.

OR

b The demand and supply function of a commodity are $p_d = 18 - 2x - x^2$ and $p_s = 2x - 3$. Find the consumer's surplus and producer's surplus at equilibrium price.

END