TOTAL PAGES : 2 11CSU01B / 11COC04 / 11CRM03

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BCom DEGREE EXAMINATION JUNE 2014 (First Semester)

Common to Branches – CORPORARE SECRETARYSHIP, COMMERCE WITH COMPUTER APPLICATIONS & COMMERCE (RETAIL MARKETING)

MATHEMATICS

Time : Three Hours

Maximum : 75 Marks

SECTION-A (20 Marks) Answer ALL questions ALL questions carry EQUAL marks

 $(10 \text{ x} \cdot 2 = 20)$

- 1 What amount lent at 10% p.a. compound interest with fetch Rs.630 as interest in 2 years?
- 2 Explain banker's gain.
- 3 Define non-singular matrix.
- 4 Write the matrix of I_3 .

5 Find
$$\frac{dy}{dx}$$
 if y=5x³+9x².

- 6 Find the derivative of $(3x+1)^3$.
- 7 Integrate e^x-1 with respect to x.
- 8 Evaluate $\int (x^2 4x + 5) dx$.
- 9 What you meant by solution space?
- 10 Define degenerate solution.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a The difference between the compound interest and the simple interest for 3 years at 5% p.a. on a certain sum of money was Rs.610. Find the sum.

OR

b Mr. X borrows Rs.20,000 at 4% compound interest and agrees to pay both the principal and the interest in 10 equal instalments at the end of each year. Find the amount of these instalments.

12 a If
$$A = \begin{bmatrix} 2 & 3 & 5 \\ 4 & 7 & 9 \\ 1 & 6 & 4 \end{bmatrix}$$
 and $B \begin{bmatrix} 3 & 1 & 2 \\ 4 & 2 & 5 \\ 6 & -2 & 7 \end{bmatrix}$, Show that $5(A+B)=5A+5B$.
OR

b Solve the following equations by Cramer's rule 3x+2y=8; 5x-3y=7.

13 a Find
$$\frac{dy}{dx}$$
 if i) $x^2+y^2=1$ ii) $xy=c^2$.

b If y=ax²+bx, Show that
$$x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} + 2y = 0$$
.

Cont...

Page 2

14 a Evaluate $\int \frac{xdx}{(x-1)(2x+1)}$

OR

- b The marginal cost function for producting x units is $y=23+16x-3x^2$ and the total cost for producing 1 units is 40. Obtain the total cost function and the average cost function.
- 15 a Solve graphically of the following L.P.P: Maximum z=x₁+x₂

Subject to

 $x_1 + 2x_2 \le 2000$ $x_1 + x_2 \le 1500$ $x_2 \le 600$

and $x_1, x_2 \ge 0$.

OR

b Use Simplex Method to solve Maximum $z=x_1+x_2+3x_3$ Subject to the constraints $3x_1+2x_2+x_3 \le 3$ $2x_1 + x_2 + 2x_3 \le 2$

and $x_1, x_2, x_3 \ge 0$.

SECTION - C (30 Marks) Answer any THREE Questions ALL Questions Carry EQUAL Marks (3 x 10 = 30)

- Find the true discount and the banker's discount on a bill whose present
- value is Rs.10,000 and which is (legally) due 4 months hence at 10% p.a. What are its face value and cash value? How much is the banker's gain?
- 17 Find the inverse of the matrix A = $\begin{bmatrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & -6 & -7 \end{bmatrix}$
- 18 Find for what values of x, the following expression is maximum and minimum respectively.

 $2x^2 - 21x^2 + 36x - 20$

Find also the maximum and the minimum values.

19 Integrate xlogx with respect to x.

Use Simplex Method to solve the following L.P.P: Maximum $z = 5x_1+3x_2$ Subject to

 $\begin{array}{l} x_1 + x_2 \leq 2 \\ 5 x_1 + 2 x_2 \leq 10 \\ 3 x_1 + 8 x_2 \leq 12 \\ \text{and } x_1, x_2 \geq 0. \end{array}$

Z-Z-Z

END

16

20