PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION JUNE 2014

(First Semester)

Branch - STATISTICS

MATHEMATICS - I

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 If α, β, γ are the roots of $x^3+px^2+qx+r=0$, Find the condition if $\alpha+\beta=0$.
- 2 If α, β, γ are the roots of $x^3 + px^2 + qx + r = 0$, Find the value of $\sum \alpha^2 \beta$.
- 3 State the formula for radius of curvature.
- 4 Define Evolute.
- If f(2a-x)=-f(x), Prove that $\int_{0}^{2a} f(x)dx = 0$.
- 6 Define Beta function.
- 7 Define Gamma function.
- 8 Evaluate $\iint xy^2 dy$.
- Write down the expansions of $\cos \theta$ and $\sin \theta$ in a series of ascending powers of θ .
- 10 Show that $\cosh x > 1$ when x is real.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

Solve $x^3-15x^2+71x-105=0$, given that the roots are in arithmetic progression.

OR

- b Diminish the roots of the equations $x^4+3x^3-2x^2-4x-3=0$ by 3.
- 12 a Find the radius of curvature of the curve $x^4+y^4=2$ the point (1,1).

OR

- b Find the coordinates of the centre of curvature of the curve xy=z at the point (2,1).
- 13 a Show that $\beta(m,n) = \frac{m}{n}$.

$$(m + n)$$

OR

- b Prove that $(n+1) = n \cdot n$.
- 14 a Evaluate $\iint xy dx dy$ over the positive quadrant of the circle $x^2+y^2=a^2$.

OR

b Evaluate $\int_{0.0}^{ab} (x^2 + y^2) dxdy$.

- 15 a Express $\cos 6\theta$ in a series of powers of $\cos \theta$.
 - $\lim_{x \to 0} \frac{1 \cos x}{x^2}$ Evaluate lim b

SECTION - C (30 Marks)
Answer any THREE Questions

ALL Questions Carry EQUAL Marks (3 x 10 = 30)

- Solve $4x^4 20x^3 + 33x^2 20x + 4 = 0$. 16
- Find the evolute of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. 17
- ∫sinⁿ xdx and 18 Establish the reduction formula for $\int\limits_0^{n/2}\sin^{10}xdx\,.$
- Evaluate $\iiint xyz dx dy dz$ over the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$. 19
- Expand $\sin^8 \theta$ is a series of cosine θ multiples of θ . 20 Z-Z-Z **END**