TOTAL PAGES : 2 11MAU21

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION JUNE 2014 (Sixth Semester)

Branch – MATHEMATICS

ALGEBRA - II

Time : Three Hours

1

Maximum : 75 Marks

SECTION-A (20 Marks)

Answer ALL questions ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

	1	2+3i	-1	
Is the matrix	2-3i	$\sqrt{5}$	$\sqrt{2} + i$	is Hermitian?
	-1	$\sqrt{2}-i$	$\frac{3}{2}$	

- 2 Define symmetric matrix and give an example.
- 3 Define vector space homomorphism.
- 4 In $F^{(3)}$ check whether (1,1,0) (3,1,3) and (5,3,3) are linearly independent.
- 5 If F is the field of real numbers find A(W) where W is spanned by (1,2,3) and (0,4,-1).
- 6 If V is a vector space over F, $u \in V \& \alpha \in F$ then prove that $||\alpha u|| = |\alpha| ||u||$.
- 7 Give an example to show that an element in A(V) is right invertible but is not invertible.
- 8 Define matrix of a transformation in a basis.
- 9 If $T \in A(V)$ us unitary S.T.TT^{*} = I.
- 10 Prove that the relation of similarity is an equivalence relation in A(V).

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a Let A&B be complex matrices such that the product AB is defined. Then

prove that i) $\overline{AB} = \overline{A} \overline{B}$ ii) $(AB)^* = B^*A^*$ iii) $(\overline{A})^{-1} = (\overline{A^{-1}})$ iv) $(A^*)^{-1} = (A^{-1})^*$. If A is non-singular. OR

- b State and prove Cayley-Hamilton theorem.
- 12 a Prove that $F^{(n)}$ is isomorphic to $F^{(m)}$ if and only if n=m.

OR

OR

- b If ϑ_1 , ϑ_2 ,, ϑ_n is a basis of V and if $w_1, w_2, ..., w_n$ is V are linearly independent over F, ten prove that $m \le n$.
- 13 a Prove that A(A(W)) = W.
 - b If V is finite dimensional and $\vartheta \neq 0 \in V$, then prove that there is an element $f \in \hat{V}$ such that $f(\vartheta) \neq 0$.
- 14 a If V is finite dimensional over F, then prove that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not 0.

OR

b If $\lambda \in F$ is a characteristics root of $T \in A(V)$, then prove that for any polynomial $q(x) \in F[x]$, $q(\lambda)$ is a characteristics root of q(T).

Cont...

11MAU21 Cont...

- 15 a If $T \in A(V)$ is such that $(\Im T, \theta)=0$ for all $\Im \in V$, then prove that T=0. OR
 - b If N is normal and AN=NA, then prove that AN*=N*A where A,N are linear transformations on V.

SECTION - C (30 Marks) Answer any THREE Questions ALL Questions Carry EQUAL Marks (3 x 10 = 30)

- 16 Prove that the characteristics roots of a Hermitian matrix are all real.
- 17
- If V is the internal direct sum of $U_1, U_2, ..., U_n$ then prove that V is isomorphic to the external direct sum of $U_1, U_2, ..., U_n$.
- 18 Let V be a finite-dimensional inner product space then prove that V has an orthonormal set as a basis.
- 19 If V is n-dimensional over F and if $T \in A(V)$ has the matrix $m_1(T)$ in the basis $\vartheta_1, \vartheta_2, \ldots, \vartheta_n$ and the matrix $m_2(T)$ is the basis w_1, w_2, \ldots, w_n of V over F, then prove that there is an element $C \in F_n$ such that $m_2(T)=Cm_1(T)C^{-1}$. If S is the linear transformation of defined by $\vartheta_i S=W_i$ for i=1,2,....n then prove that C can be chosen to be $m_1(S)$.
- 20 If $T \in A(V)$ has all its characteristic roots in F, then prove that there is a basis of V in which the matrix of T is triangular.

7-7-7

END