(10)

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2018

(Third Semester)

Branch - MATHEMATICS

MECHANICS

		MECHANICS	
Ti	me:	: Three Hours Maximum: 75 Marks	
		Answer ALL questions ALL questions carry EQUAL marks $(5 \times 15 = 75)$	
1	a	State and prove Lagrangian form of D'Alembert's principal.	(7)
	b	A particle of mass m suspended by a massless wire of length $r = a + b \cos wt \ (1>b>0)$ to form a spherical pendulum. Find the equations of motion.	(8)
	c	State and prove Konig's theorem.	(10)w
	d	Derive the angular momentum of system.	(5)
2	a	Find the differential equation of motion for a spherical pendulum of length 2.	(7)
	b	Obtain the standard form of Lagrange's equation for a holonomic system. OR	(8)
	c	Derive the Lagrange's equation using Routhian function.	(8)
	d	Write short notes on ignorable coordinates.	(7)
3	a	Derive the Euler-Lagrange equation of stationary value.	(8)
	ь	Find the stationary values of the function $f = z$ subject to the constraints $\phi_1 = x^2 + y^2 + z^2 - 4 = 0$; $\phi_2 = xy - 1 = 0$.	(7)
	c	Derive the Hamilton's canonical equations of motion.	(8)
	d	Find the equation of motion using Hamiltonian procedure given that a mass spring system consisting of a mass m and a linear spring of stiffness k and assume that the displacement x is measured from the	
		unstressed position of the spring.	(7)
4	a	Express the first pfaffion's system.	(5)
	b	Derive the Hamilton – Jacobi equation. OR	(10)
	C	State and prove Stackel's theorem.	(10)
	d	Derive modified Hamilton – Jacobi equation.	(5)
5	a	Show that the transformation $Q = \frac{1}{2}(q_2 + p^2)$ and $P = -\tan^{-1}\frac{p}{q}$ is	
		canonical.	(8)
	b	Obtain the four major types of generating functions associated with the	

transformation $Q = \log \frac{\sin p}{n}$ and $P = q \cot p$.