PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2018

(Second Semester)

Branch - MATHEMATICS

MATHEMATICAL STATISTICS

Time: Three Hours

Answer **ALL** questions

ALL questions carry **EQUAL** marks

(5 x 15 = 75)

1 a The random variable X has the normal distribution with density $f(x) = \left(\frac{1}{\sqrt{2\pi}}\right)e^{-x^2/2}$ Find $E(x^2)$.

(5)

b State and prove Chebyshev inequality.

c Prove that the characteristic function of the sum of an arbitrary finite number of independent random variables equal the product of their characteristics functions.

OR

d The joint distribution of the random variable (X Y) is given by the

density $f(x, y) = \begin{cases} \frac{1}{4}[1 + xy(x^2 - y^2)] & \text{for } |x| \le 1 \text{ and } |y| \le 1\\ 0 & \text{for all other point } s \end{cases}$

Show that the random variables X and Y are dependent. Also find the density function of the sum Z = X + Y. (8)

- e If for a random variable X the absolute moment of order n exists, for arbitrary K (K = 1, 2, ,n-1) then prove that the following inequality is true: $\beta_k^{\frac{1}{k}} \le \beta_{k+1}^{\frac{1}{k}}$. (7)
- 2 a Define uniform distribution. Find μ_2 of the uniform distribution. (6)
 - b The random variable X has the distribution N (1, 2). Find the probability that X is greater than 3 is absolute value. (4)
 - c State and prove addition theorem of gamma distribution. (5)
 OR
 - d Let the random variable X_n have a binomial distribution defined by the formula $P(X_n = r) = \frac{n!}{r!(n-r)!} p^r (1-p)^{n-r}$, where r takes on the values

0, 1, 2,....n...If for n = 1, 2, ... the relation $p = \frac{\lambda}{n}$ holds where $\lambda > 0$ is

a constant, prove that
$$\lim_{n \to \infty} P(X_n = r) = \frac{\lambda^r}{r!} e^{-\lambda}$$
. (6)

The random variable X has the gamma distribution with the density $f(x) = \begin{cases} 0 & \text{for } x \le 0 \\ 2e^{-2x} & \text{for } x > 0 \end{cases}$, what is the probability that X is not smaller than

3 a Prove that the sequence of random variable $\{X_n\}$ given by $\begin{cases} x & r \\ x & r \end{cases} = \begin{pmatrix} n \\ x & r \end{pmatrix}$

 $p\left\{Y_n = \frac{r}{n}\right\} = \binom{n}{r} p^r (1-p)^{n-r}, \text{ where } 0
<math display="block">X_n = Y_n - p \text{ is stochastically convergent to 0, ie for any } \in > 0 \text{ we have}$

 $X_n = Y_n - p$ is stochastically convergent to 0, ie for any $\epsilon > 0$ we have $\lim_{n \to \infty} P(|X_n| > \epsilon) = 0$. (8)

- b State and prove Lindeberg Levy theorem. (7)
- c State and prove the De Moivre Laplace theorem. (15)
- 4 a Prove that a stochastic process $\{X_t, 0 \le t \le \infty\}$ where X_t is the number of signals in the interval [0, t], satisfying conditions.
 - i) The process $\{X_t, 0 \le t \le \infty\}$ is a process with independent increments.
 - ii) The process $\{X_t, 0 \le t \le \infty\}$ is a process with homogenous increments.
 - iii) The following relations are satisfied $\lim_{t\to 0} \frac{W_1(t)}{t} = \lambda(\lambda > 0)$:

 $\lim_{t \to 0} \frac{1 - W_0(t) - W_1(t)}{t} = 0 \text{ and the equality } P(X_0 = 0) = 1 \text{ is a homogenous}$ poisson process. (15)

OR

- b State and prove Furry Yule process. (7)
- c Prove that a function R(T) is the correlation function of a process $\{Z_t, -\infty < t < \infty\}$ stationary in the wide sense, continuous and satisfying m = 0, $\sigma = 1$, if and only if there exists a distribution function $F(\lambda)$

such that $R(T) = \int_{-\infty}^{\infty} e^{i\lambda r} dF(\lambda)$. (8)

- 5 a Define χ^2 distribution and derive the density function of χ^2 distribution with one and six degrees of freedom. (15)
 - b Obtain the distribution of the two dimensional random variables (\overline{X}, S) ,

where $\overline{X} = \frac{1}{n} \sum_{k=1}^{n} X_k$, $S^2 = \frac{1}{n} \sum_{k=1}^{n} (X_k - \overline{X})^2$. (15)

Z-Z-Z END