PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2018

(Third Semester)

Branch - MATHEMATICS

FUNCTIONAL ANALYSIS

Γir	nė:	Three Hours Answer ALL questions ALL questions carry EQUAL marks (5 x 15 = 75)	
		ALL questions early EQUAL marks (5 x 15 - 75)	
	a	Prove that every Cauchy sequence is bounded.	(3)
	b	Define Isometric isomorphism of a normed spaces.	(3)
	С	Let X be a closed subspace of a normed space Y. Then prove that the factor (or) quotient space Y / X is a normed space under the norm $ y+x = \inf \{ y+x : x \in X\}$.	(9)
	d	OR Let X and Y be normed spaces and T a linear operator on X into Y. Then prove that the following statements are equivalent: (i) T is continuous (ii) T is continuous at the origin (iii) T is bounded (iv) TS ₁ is a bounded subset of Y	(8)
	e	If X is Banach space and $T \in \mathcal{B}(X)$ such that $ T < 1$, then prove that $I - T$ is invertible.	(5)
	f	Define a Banach Algebra.	(2)
	a	Define an inner product space.	(3)
	b	Prove that every inner product space X is a normed space with respect	
		to the norm $ x = \langle x, x \rangle ^{1/2}$, $\forall x \in X$.	(6)
	С	Prove that if M and N are closed subspace of a Hilbert space X such that $M \perp N$, the subspace $M + N = \{x + y \in X; x \in M \text{ and } y \in N\}$ is	
		also closed. OR	(6)
	d	State and prove the Bessel's inequality.	(8)
	e	Prove that every Hilbert space X is reflexive.	(7)
	a	Prove that an operator T* is bounded, linear and unique.	(6)
	Ъ	Prove that the proper values of a self-adjoint operator are real numbers and two proper vectors corresponding to two different proper values of a self-adjoint operator are orthogonal.	(5)
	С	Prove that a bounded linear operator T on a Hilbert space X is normal iff $ T * x = Tx $ for every $x \in X$.	(4)
	d	Define sesqulinear function.	(3)
	e	State and prove the Lax-Milgram Lemma.	(10)

	1484 1000	
	14MAP09 Cont	
С	State Banch – Steinhaus theorem. OR	(3)
d	State and prove closed graph theorem.	(8)
·e	Let $\{T_n\}$ be a sequence of continuous linear operators of Banach space X into Banach space Y that $\lim_{n\to\infty} T_n x = Tx$ exists for every $x \in X$. Then,	
	prove that T is continuous linear operator and $ T \le \liminf_{n \to \infty} T_n $.	(7)
a	State and prove Banach Contraction Principle.	(10
b	State Schauder's Fixed – Point theorem.	(3)
c	Define a contraction mapping. OR	(2)
d	Let T be an operator on X. Then prove that S and TST ⁻¹ have the same eigen values.	(3)
e	Prove that the adjoint of a compact operator is compact.	(5)
f	Let T be an non-zero, compact, self-adjoint operator on a Hilbert space. Then prove that T has an eigen value λ equal to either $ T or - T $.	(7)
	Z-Z-Z END	