(7)

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2018

(Second Semester)

Branch - MATHEMATICS

		<u>COMPLEX ANALYSIS</u>	
Tin	ne:	Three Hours Maximum: 75 M	Marks
		Answer ALL questions ALL questions carry EQUAL marks (5 x	15 = 75)
1	a	If $T_1 z = \frac{z+2}{z+3}$, $T_2 z = \frac{z}{z+1}$ then find $T_1 T_2 z$, $T_2 T_1 z_1$, and $T_1^{-1} T_2 z$.	(7)
	b	State and prove Cauchy's theorem in a disk. OR	(8)
	С	State and prove Cauchy's integral formula.	(8)
	d	State and prove Morera's theorem.	(7)
2	a	State and prove argument principle.	(10)
	b	If u_1 and u_2 are harmonic in Ω , then show that $\int_{\gamma} u_1^* du_2 - u_2^* du_1 = 0$ for	
		every cycle γ which is homologous to omod Ω . OR	(5)
	С	Derive Poisson integral formula. Express Poisson integral formula polar co-ordinates.	ala into (15)
3	a	Let $f(z)$ be an analytic function whose region of definition contains a annulus $R_1 < z-a < R_2$ show that $f(z)$ can be developed in a general	
		power series of the form $f(z) = \sum_{n=-\infty}^{\infty} A_n (z-a)^n$ and prove the	nat the
		Laurent development is unique. OR	(15)
	b	Define infinte product. Show that the necessary and sufficient co	ndition
		for the absolute convergence of the product $\pi(1+a_n)$ is the convergence	ergence
		of the series $\sum_{1}^{\infty} a_n $.	(8)
	c	State and prove Poisson-Jenson's formula.	(7)
4	a	State and prove Riemann mapping theorem. OR	(15)
	b	State and prove Harnack's principle.	(7)
	С	Prove that the continuous function u(z) which satisfies mean property is Harmonic.	value (8)

5 a Prove that any two bases of the same module are connected by a

unimodular transformation.