PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2018 (First Semester)

Branch-PHYSICS

CONDENSED MATTER PHYSICS

Time:	Three Hours	Maximum: 75 Marks			
	AI	<u>SECTION-A (</u> Answer ALL L questions carr	questions	nrks ($(10 \times 1 = 10)$
1	Identify the packing (i) 0.74 (iii) 0.52	(structure. (ii) 6.54 iv) 0.68		
2	Name the element co (i) Nacl (iii) Fe ₃ C	(le cubic syster (ii) Ag iv) CsCl	n.	
3	If the mobility of ele (i) decreases (iii) remainsconstant	(increases the (ii) increases iv) neutral	resistivity.	
4	Choose most widely (i) Germanium and s (iii) Gold and silver	silicon (materials are (ii) Copper an v) Tungsten a	d aluminium	
5	Find the classical value (i) 3R./2 (iii) Ru	(ce specific hea (ii) 3Ru iv) RW2	nt is	
6	Identify at lower ten (i) T ³ (iii) T	nperature the lat (ii) (iv	1,	eat varies as	
7	The susceptibility of (i) 10 ⁵ (iii) 10 ¹⁷	a diamagnetic m (, 1	out	
8	Indicate the relative (i) 7000 (iii) 700	'(ii)			
9	The transition tempe (i) IK (iii) 4.12K	(ry is (ii) 1.14K) 9.22K K _B T _C		
10	The width of the ene (i) OK (iii) K_BT_C		erconductor is (ii) 3.5 K_BT_C iv) 300 K_BT_C	maximum at	
		SECTION - B Answer ALL	`		

ALL Questions Carry EQUAL Marks (5x7 = 35)

12 a Derive an expression for Claussius - Mossotti relation.

OR

- b Define the following terms:
 - (i) forbidden energy gap (ii) valence band
- 13 a Explain Einstein's theory of lattice heat capacity.

OR

- b Derive an expression for the thermal expansion coefficient including the anharmonic contribution to lattice vibrations.
- 14 a Outline the ferromagnetism.

OR

- b Bring out the Hysteresis loop.
- 15 a Explain briefly about D.C Josephson's effect.

OR

b Describe the Meissner effect.

SECTION - C (30 Marks)

Answer any THREE Questions
ALL Questions Carry EQUAL Marks (3 x 10 = 30)

- 16 Enumerate Brillouin zone in one dimension and two dimension.
- Discuss the Kroenig Penny model for the motion of an electron in a periodic potential.
- 18 State Dulog Petite's law and show how the departure from this law at lower temperature has been explained by Einstein's theory.
- 19 Discuss the Langevin's classical theory of paramagnetism.
- 20 Derive the London equation and explain the term coherence length.

Z-Z-Z END