PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MSc DEGREE EXAMINATION DECEMBER 2018

(First Semester)

Branch -SOFTWARE SYSTEMS

(Five year integrated)

Time:	Three Hours		Maximum: 75 Marks
	Answer A	A (10 Marks) LL questions carry EQUAL marks	$(10 \times 1 = 10)$
	[2 -2 3]		
1	For the matrix $A = \begin{bmatrix} 2 & -2 & 3 \\ -2 & -1 & 6 \\ 1 & 2 & 0 \end{bmatrix}$, one of the eigen value	ue is 3. The other two
	eigen values are	(ii) 3, -5 (iv) 3,5	
	Identify the rank of a 3 x 3 null m (i) 3 (iii) 1	(ii) 2	
3	The general solution of $\frac{d^2y}{dx^2} + 5\frac{dy}{dx}$	$\frac{y}{x} + 4y = 0$ is	
	The general solution of $\frac{d^2y}{dx^2} + 5\frac{d}{dx}$ (i) $y = Ae^x + Be^{4x}$ (iii) $y = Ae^x + Be^{-4x}$	(ii) $y = Ae^{-x} + Be^{-4x}$ (iv) $y = Ae^{-x} + Be^{4x}$	× ·
4 .	The complete solution of $z = px + q$	parameter	
	(i) $z = ax + by + 2ab$		
	(iii) $z = ax + by + 2 \sqrt{ab}$	(iv) $z = ax + by + $	2ab
5	In Gauss Elimination method the form.	coefficient matrix is t	ransformed to
		(ii) lower triangula	r
6		(iv) symmetric	lu la diazzantia
		(ii) Gauss - Seidal (iv) Newton's	ix is diagonally
	Newton's forward interpolation for (i) equal (iii) open	ormula used only for (ii) closed (iv) unequal	intervals.
	Newton's Backward interpolation nearer to the of a set tabul	ar values.	polate the values of y
	(i) begining (iii) middle	(ii) end (iv) outside	
9	In Transzoidal rule v(x) is a	function of v	

(ii) quadratic

(iv) even

(i) linear (iii) odd

SECTION - B (25 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 5 = 25)$

11 a Find the rank of the matrix
$$\begin{bmatrix} 3 & 1 & -5 & 1 \\ 1 & -2 & 1 & -5 \\ 1 & 5 & -7 & 2 \end{bmatrix}$$
.

OR

b Show that the equations x + 2y = 3; y - z = 2; x + y + z = 1 are consistent.

12 a Solve
$$(D^2 - 5D + 6)y = e^{4x}$$
.

b Solve the equation p + q = x + y.

13 a Solve the system by Gauss – Elimination method: 2x + 3y - z = 5; 4x + 4y - 3z = 3 and 2x - 3y + 2z = 2

b Apply Gauss – Jordan method to find the solution of the following system: 10x + y + z = 12; 2x + 10y + z = 13; x + y = 5z = 7

14 a Using Newton's forward interpolation find a polynomial of degree three which takes the values:

x :	2	4	6	8	10
у :	0	0	1	0	0

OR

b Find the missing value of the table given below. What assumptions have you made to find it?

 de to mid it.						
Year :	1917	1918	1919	1920	1921	-
Export (in tons) :	443	384		397	467	

15 a Find the second derivative of $x^{1/3}$ at x = 50 given the table below:

X	:	50	51	52	53	54	55	56
y = x	1/3 :	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259

OR

b A curve passes through the points (1, 2), (1.5,2.4), (2.0, 2.7), (2.5, 2.8), (3, 3), (3.5, 2.6) and (4.0, 2.1). Using Simpson's one-third rule, obtain the area bounded by the curve, the x axis and x = 1 and x = 4.

SECTION -C (40 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 8 = 40)$

16 a Determine the values of a and b for which the equations x + y + 3 = 3; x + 2y + 2z = 6; x + ay + 3z = b, have (i) no solution (ii) a unique solution (iii) infinite number of solutions.

OR

b Find the eigen values and eigen vectors of
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
.

17 a Solve
$$(D^2 + 16)y = 2e^{-3x} + \cos 4x$$
.

b Solve $(y^2 + z^2) p - xy q = -xz$.

18SSP03/14SSP03

Cont...

Solve the following system by Gauus – Jacobi method:

$$10x - 5y - 2z = 3$$
; $4x - 10y + 3z = -3$ and $x + 6y + 10z = -3$

b Solve the following system of equations by Gauss-Seidal method correct to three decimal places: x + y + 54z = 110; 27x + 6y - z = 85; 6x + 15y + 2z = 72

19 a Determine the value of y at x = 21 and x = 28 from he following data:

o the restor	out y at in	E T COTTON 17	20 IL OILL IIO	romo wing ac
x :	20	23	26	29
у :	0.3420	0.3907	0.4384	0.4848

OR

b The population of a town is as follows::

Year	:	1941	1951	1961	1971	1981	1991
Population in Lakhs	:	20	24	29	36	. 46	51

Estimate the population increase during the period 1946 to 1976.

20 a The population of a certain town is given below. Find the rate of growth of the population in 1931 and 1941.

Year :	1931	1941	1951	1961	1971
Population in thousands	: 40.62	60.80	79.95	103.56	132.65

OR

b Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Trapezoidal rue with h = 0.2. Hence obtain an

approximate value of π . Can you use Simpson's rule.

END