PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) BSc DEGREE EXAMINATION MAY 2017 (First Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

DIFFERENTIAL EQUATIONS LAPLACE TRANSFORMS & FOURIER SERIES

Time : Three Hours

Maximum : 75 Marks

<u>SECTION-A (20 Marks)</u> Answer ALL questipns ALL questions carry EQUAL marks

(10x2 = 20)

- 1 Solve $y = (x-a) p p^2$.
- 2 Solve $(D^2 2mD + m^2) y = 0$.
- 3 Solve $\frac{d}{dxdy} = 0$.

Eliminate a and b from z = (x + a) (x + b).

FindL
$$\begin{pmatrix} 1 \\ U^2 \\ V \end{bmatrix}$$

6 Evaluate $\mathbf{Je}^{2t} \sin 3t \, dt$.

FindL⁻¹

(s + a y

Write the formula to find $L'^1 \{f(s)\}$.

Expand f(x) = x as a fourier series in (-71, *it*).

10 Write the Fourier series expansion of an odd function f(x) in (-*n*, 7t).

<u>SECTION - B (25 Marks)</u> Answer ALL Questions ALL Questions Carry EQUAL Marks (5x5 = 25)

11 a Solve
$$x^2 = 1 + p^2$$
.

b Solve
$$(D^2 - 3D - h^2)y = \sin 3x$$
.

12 a Solve
$$p(1 + q^2) = q(z - 1)$$
.
OR

Solve $z = px + qy + yl + p^2 + q^2$.

13 a Find L(Sin²2t).

OR

Find L q-e*'

Page 2

14MCU02 Cont...

14 a Fino	$dL' \qquad \frac{f s'-3 A}{\{(s-3y+4)\}}$	ont
b Fii	or (1) or (1) $(s+2)^4$	
15 a	Find a_n in the Fourier series expansion of $f(x) = x$ in (-7C, 7t). OR	
• b	Express $f(x) = x$ (-71 $\leq x \leq 71$) as a Fourier series with period 271.	
	$\frac{\text{SECTION - C (30 Marks)}}{\text{Answer any THREE Questions}}$ ALL Questions Carry EQUAL Marks (3x10 = 30)	
16	Solve $x^{2^{-4-}+3x-+y} = 1$ $dx^4 dx (1-x)^4$	
17	Solve $(x^{z} - yz)p + (p^{z} - zx)q = z^{2} - xy$.	
18	Evaluate $\frac{\int_{f_e}^{00} -\underline{t} \underline{g}^{2t}}{O} dt.$	
19	Solve $\frac{d^2v}{dt^2} + 2 \frac{dv}{dt}$ $3y = \text{sint given that } y(0) = y'(0) = 0$, using inver Laplace transforms.	se
20	Find Fourier series for $f(x) = 1 + x \ 0 < x < 71$ $= -1 + x \ -71 < x < 0.$	
	Z-Z-Z END	

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) BSc DEGREE EXAMINATION MAY 2017

(Second Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

NUMERICAL METHODS

SECTION S (20 Marksl

Time : Three Hours

Maximum : 75 Marks

Answer ALL questions ALL questions carry EQUAL marks

(10 x 2 = 20)

- Find the interval where real root of the equation $x^3 + x^2 100 = 0$ lies.
- 2 Write Newton-Raphson formula.,
- 3 Write the methods that are available to solve system of equations in direct and indirect mtheods.
- 4 Write the convergence of Gauss-Seidal method.
- 5 Write down the Gregory Newton backward difference formula for interpolation. *
- 6 Write down the Gauss's central difference formula for interpolation.
- 7 Write down the trapezoidal formula.
- 8 Write down the Newton's forward difference formula for numerical differentiation.
- 9 Write down the Euler's modified formula.
- 10 Write Milne 's corrector formula.

<u>SECTION - B (25 Marksl</u> Answer ALL Questions

ALL Questions Carry EQUAL Marks (5x5 = 25)

22

- 11 a Find the negative root of the equation $x^3 2x + 5 = 0$ by iteration method. OR
 - b Find the real root of $x_3 6x + 4 = 0$ by Newton Raphson method.
- 12 a Solve by Gauss Jordan method, the equations

	2x + y + 4z = 12, $8x - 3y + 2z = 20$						4X+	- IIy	-Z	= 33.
					OF	۲	I.			l
							"4	1	2'	*
b	Find t	the	inverse	of	the					. by Gauss elimination
							1	-2	2	i

method.

13 a Apply Gauss's forward formula to find the value of f(x) at x = 3.75 from the table .

b Derive the Stirling's formula.

Page 2

1.30

14 a From the following table of values of x and y, find — at $\begin{array}{c} dy \\ dx \end{array} = 1.05.$ x: 1.00 1.05 1.10. 1.15 1.20 1.25 y: 1.00000 1.02470 1.04881 1.07238 1.069544 1.1180

b Evaluate Jx⁴dx using trapezoidal rule.

.3

-3

15 a Using Taylor series method, obtain the values of y at x = 0.1 (0.1) 0.3, if y satisfies the equation y = -xy.

b Given $\frac{d^2y}{dx^2}$, $y^3 = 0$, y(0) = 10, y'(0) = 5. Evaluate y(0.1) using R - K method.

<u>SECTION - C (30 Marks)</u> * Answer any THREE Questions ALL Questions Carry EQUAL Marks (3 x 10 = 30)

16 Show that the iterative formula for finding the reciprocal of N is

Xn+1 = Xn(2-NXn) and hence find the value of ---.

17 Solve by Gauss Seidal method 6x + y + z = 105 4x+8y + 3z=1555x + 4y - 10z = 65,

v

18 Find the first and second derivative of the function f(x) from the table given below at x = 0.6

X:	0.4	0.5	0.6	0.7	0.8
f(x):	1.5886	1.7974	2.0442	2.3275	2.6511

19 Use Romberg's method to compute [----- dx correct to 4 decimal places. $o^{1 + x}$

Hence deduce an approximate value of *n*.

20 Give $= l^{(l+x^2)y^2}$ and u(0) = i; y(0.1) = 1.06, y(0.2) = 1.12, y(0.3) = 1.21, evaluate y(0.4) by Milne's predictor - corrector method.