PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)'

BSc DEGREE EXAMINATION MAY 2017 (First Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

CALCULUS

Time: Three Hours

* . Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(10 \times 2 = 20)$

- When will a function f(x, y) has minimum value of x = a, y = b?
- 2 State Legrange's method.
- 3 Give the Cartesian formula for the radius of curvature.
- Find $\frac{dy}{dx}$ when $x = a(\cos t + 1 \sin t)$, $y = a(\sin t 1 \cos t)$.

 $-\frac{n}{2}$

5 Prove that $J\sin^{11} x dx = J\cos^{n} x dx$.

6 • Evaluate Jsin⁶ j

0

3 2

7 Evaluate JJxy(>

0 1

ах.

8 Evaluate * f $J(x^2 -$

00 •

- 9 Find T(1).
- 10 Give the relation

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

Give the working rule to examine a function u = f(x, y) for maxima and mimima.

OR

- b Discuss the maxima and minima of the function x y (6 x y).
- Show that in the parabola $y^2 = 4ax$ at the poinLt, $p = -2a(1+1)^2$

OR

b Find the radius of curvature of the cardiod $r = a(1 - \cos 0)$.

Cont...

13 a Prove that
$$0^{c} \sin^{3} 0^{-1} d0 = --$$
.

OR

- b Derive the reduction formula for $I_n = J\sin^{11} x dx$.
- Evaluate $JJ(x^2 + y^2)$ dx dy over the region for which x_2 y are each > 0 and x + y < 1.

b Evaluate $\mathbf{J} \mathbf{J} \mathbf{x}^2 d\mathbf{x} d\mathbf{y}$.

0
 Vy

15 a Express $Jx^m (1 - x^n)^p dx$ in terms of Gamma functions.

0

b Evaluate jsinlo d0.

0. .

SECTION - C (30 Marks) Answer any THREE Questions

All Questions Carry EQUAL Marks (3 x 10 = 30)

- If $u = a^3x^2 + b^3y^2 + c^3z^2$ where $\sqrt[3]{x} + \sqrt[3]{y} + \sqrt[3]{z} = 1$, find the minimum value of u.
- 17 Find the evolute of the ellipse $\frac{XV}{a^2b^2}$ = 1.

$$\frac{n}{2}$$

Derive the reduction formula for $J\sin^m x \cos^n x dx$.

0

- Evaluate JJJxyz dx dy dz taken through the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$.

positive values of the variables for which the expression is real.