PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BA DEGREE EXAMINATION DECEMBER 2018

(Fourth Semester)

Branch - ECONOMICS

MATHEMATICAL METHODS – II

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- What is Marginal Revenue? 1
- 2 What are the conditions for maximization?
- What is meant by Partial Differentiation?
- 4 State the marginal utility equation.
- 5 What is Integration?
- What is indefinite integration?
- State the different parts of linear programming problem.
- 8 Define the term slack variable.
- 9 What is Input-Output Analysis?
- 10 Define closed input-output model.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

11 a If
$$y = -x(x^2 + 3)$$
 find $\frac{d_y}{d_x} = ?$

- The total cost function is $c = \frac{1}{3}Q^3 + 6Q^2 + 12Q$, find AC and MC. b
- Find the total differential of $z = x^3 + 3x^2y + 3y^2x + y^3$ 12 a
 - Find the first and second order partial derivatives of the following b function $u = x^2y^2 + x^5 + y^6$ and also verify that $\frac{d^2u}{dxdy} = \frac{d^2u}{dydy}$
- 13 a Explain the application of integration in economics.

- b Describe the different rules of integration.
- 14 a Explain the uses of Linear programming.

- If $A = \begin{bmatrix} 2 & 4 & 5 \\ 7 & 8 & 9 \\ 15 & 20 & 25 \end{bmatrix}$, find the saddle point. b
- Check for the variability of the system using Hawking-Simen conditions. 15 a If the technology coefficient matrix A is $\begin{bmatrix} 0.4 & 0.1 \\ 0.7 & 0.6 \end{bmatrix}$

OR

b Explain the assumptions of input-output analysis.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry **EQUAL** Marks $(3 \times 10 = 30)$

- The demand and total cost functions are p=25-4x and $TC = x^2 + 5x 30$ respectively. Find the maximum profit.
- Given $z = x^3 e^{2y}$, find all the partial derivatives of second order.
- If $MR = 16 x^2$, find the maximum total revenue. Also and the total and average revenue and demand.
- How will you solve a given L.P.P by graphical method?
- 20 $A = \begin{bmatrix} 0.3 & 0.3 \\ 0.1 & 0.2 \end{bmatrix}$ is the technological coefficient matrix. $F.D = \begin{bmatrix} 200 \\ 300 \end{bmatrix}$ is the final demand matrix. Determine the gross output.

Z-Z-Z

END