PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

MCA DEGREE EXAMINATION DECEMBER 2018

(First Semester)

Branch - COMPUTER APPLICATIONS

MATHEMATICAL STRUCTURES											
Time	Answer A	Maximum: 75 Marks -A (10 Marks) LL questions carry EQUAL marks (10 x 1 = 10)									
1	Indicate $\rceil (p \land q)$ is equivalent to (i) q (iii) $\rceil p \lor q$	(ii) p . (iv) (¬p∨¬q)									
2	The truth table of a will (i) tautology (iii) connectives	contain only T entries in the last column (ii) contradiction (iv) contingency									
3	The number of relations defined (i) 2n (iii) 2 ⁿ	on a finite set with n elements is (ii) n ² (iv) 2 ⁿ⁻¹									
4	If $f: A \rightarrow B$ is such that $f(x) = x - f \log (2) = $ (i) 3 (iii) 2	1 and $g: B \to C$ is such that $g(y) = y^2$, then (ii) 1 (iv) 0									
5	Bolzano's method is also called a (i) false position (iii) bisection										
6	The rate convergency in Gauss – that of Gauss – Jacobi method. (i) four (iii) one time	Seidel method is roughly times than (ii) three (iv) two									
7	A game is said to be strictly determined in $\underline{v} = v = \overline{v}$ (iii) $\underline{v} = 0 = \overline{v}$	miable if (ii) $\underline{v} \le v \le \overline{v}$ (iv) $\underline{v} \ge v \ge \overline{v}$									
8	The value of the game Player A Player B $\begin{bmatrix} 2 & 4 \\ 10 & 7 \end{bmatrix}$ is										
9	The critical path in a network is _ (i) longest time path (iii) mean time path	(ii) shortest time path (iv) dummy path									
10	In PERT, the value of σ^2 is	$\left(\frac{t_p - t_m}{t_p}\right)^2$									

SECTION - B (25 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks

 $(5 \times 5 = 25)$

11 a Show that $(p \land q) \land \sim ((p \lor q))$ is a fallacy nor contradiction.

- b Explain the validity of the argument
- 12 a Show that the relation \subseteq (subset) defined on a power set P(A) of the set A is a partial order relation.

- b Show that the function f defined by $f: R \to R$ such that $f(x) = -\sin x$, for all x in R, is neither one-one nor onto, where R is the set of all real numbers.
- 13 a Solve the real root of the equation $x^3 3x 5 = 0$, correct to three decimal places by Regula - Falsi method.

- b Solve the following system of equations by Gauss elimination method: 2x + 3y - z = 5; 4x + 4y - 3z = 3; 2x - 3y + 2z = 2
- 14 a Solve the game whose payoff matrix is given by:

Player B

$$B_1 \ B_2 \ B_3$$

Player A $A_1 \begin{bmatrix} 15 & 2 & 3 \\ 6 & 5 & 7 \\ A_3 \begin{bmatrix} -7 & 4 & 0 \end{bmatrix}$

OR

b Solve the following game and find the value of the game

Player B

Player A
$$\begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$$

15 a Explain a network and state the rules for constructing the network.

OR

- b Organize the arrow network diagram comprising activities A,B,...and L such that the following relationship are satisfied:
 - (i) A,B and C, the first activities of the project, can start simultaneously;
 - (ii) A and B proceed D;
 - (iii) B proceeds E,F and H;
 - (iv) F and G proceed G;
 - (v) E and H proceed I and J;
 - (vi) C,D,F and J proceed K;
 - (vii) K proceeds L;
 - (viii) I, G and L are the terminal activities of the project.

SECTION -C (40 Marks)

Answer ALL questions

ALL questions carry EOUAL Marks $(5 \times 8 = 40)$

- 17 a If R is a relation on a set A, then prove that
 - (i) when R is reflexive, R⁻¹ is also reflexive;
 - (ii) R is symmetric if and only if R=R⁻¹
 - (iii) R is anti-symmetric if and only if $R \cap R^{-1}I_A$.

OR

- b If $f: A \to B$ and $g: B \to C$ are invertible functions, then prove that $gof: A \to C$ is also invertible and $(gof)^{-1} = f^{-1}og^{-1}$.
- 18 a Find the positive root of the equation x-cosx=0 by direction method.

OR

b Solve the following equations by Gauss-Seidal method, correct to 3 decimal places.

$$x+y+54z=110$$
; $27x+6y-z=85$; $6x+15y+2z=72$.

19 a Solve the following game and find the value of the game Player B

Player A
$$\begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$$

OR

b Solve the game graphically:

Player B

Player A
$$\begin{bmatrix} 1 & 3 & -3 & 7 \\ 2 & 5 & 4 & -6 \end{bmatrix}$$

20 a A project consists of a series of tasks labeled A,B,...H,I with the following [W<X,Y means X and Y cannot stat until W is completed; X,Y<W means W cannot start until both X and Y are completed etc.] With this notoation, construct the net work diagram having the following constraints: A<D,E; B,D<F; C<G; B,G<H; F,G<I.

Find also the minimum time of completion of the project, when the time (in days) of completion of each tasks is as follows:

Task:	A	В	C	D	Е	F	G	Н	I
Time:	23	8	20	16	24	18	19	4	10

OR

b A project schedule has the following characteristics:

Activity	1-2	2-3	2-4	3-5	4-5	4-6	5-7	6-7	7-8	7-9	8-10	9-10
Most likely Time	2	2	3	4	3	5	5	7	4	6	2	5
Optimistic Time	1	1	1	3	2	3	4	6	2	4	1	3
Pessimistic Time	3	3	5	5	4	7	6	8	6	8	3	7

Invent the critical path and the probability of completing the project in 30 days.