PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

MCA DEGREE EXAMINATION DECEMBER 2018

(First Semester)

Branch - COMPUTER APPLICATIONS

COMPUTER SYSTEM ARCHITECTURE

COMPUTER STSTEM ARCHITECTURE			
Time:	Three Hours		Maximum: 75 Marks
SECTION-A (10 Marks! Answer ALL questions ALL questions carry EQUAL marks $(10 \times 1 = 10)$			
1	In computers, subtraction is gene (i) l'scomplement (iii) 9's complement	rally carried out by (ii) 2'scomplement (iv) 10's complemen	t
2	The circuit used to store one bit of (i) decoder (iii) Flip flop	of data is known as (ii) encoder (iv) register	
3	Floating point representation is u (i) Boolean values (iii) Real integers	sed to store (ii) Whole numbers (iv) Integers	
4	Stack-organised computer uses in (i) zero address (iii) indirect addressing	nstruction of (ii) two address (iv) index addressing	
5	A machine language instruction f (i) operand field (iii) operation code field and operation	(ii) operation code fie	
6	The instruction form 'register to (i) 1 byte (iii) 3 bytes	register' has a length o (ii) 2 bytes (iv) 4 bytes	f
7	In Reversh Polish notation, expre (i) AB*CD*+ (iii) AB * CD + *	ession A *B + C * B is (ii) A * BCD * + (iv) A * B * CD +	written as
8	The addressing mode used in an in (i) absolute (iii) index	instruction of the form (ii) indirect (iv) none of the above	
9	Which of the following is lowest (i) cache memory (iii) Registers	in memory hierarchy? (ii) secondary memo (iv) RAM	
10	The fastest data access is provide (i) Caches (iii) SRAM's	ed using (ii) DRAM's (iv) Registers	
SECTION - B (25 Marks!			

Answer ALL questions

ALL questions carry **EQUAL** Marks (5x5 = 25)

12 a Discuss logic microoperations with example.

OF

- b Convert the following binary numbers to decimal:
 - (i) 101110 9ii) 110110100
- 13 a Explain the instruction format.

OR

- b Explain the phases of instruction cycle.
- 14 a Draw and discuss the block diagram of DMA controller.

OR

- b Explain parallel priority Interrupt.
- 15 a Explain the hardware organization of associative memory.

OR

b Discuss the characteristics of multiprocessors.

SECTION -C (40 Marks!

Answer ALL questions

ALL questions carry EQUAL Marks (5x8 = 40)Question no. 16 is compulsory

- Simplify the following Boolean function and draw the logic diagram with (i) AND OR gates (ii) NAND gates

 F (A, B, C, D) = £ (0, 2, 8, 9, 0, 11, 14, 15)
- 17 a List all arithmetic micro operations with example.

OR

- b Elucidate the arithmetic logic shift unit with diagram and function table.
- 18a Write an assembly language program to subtract two numbers and explain.

OR

- b Discuss the major tasks performed by the assembler during the translation process.
- 19 a Explain addressing modes with example.

OR

- b How data transfers to and from peripherals are handled? Explain.
- 20 a Explain associative and direct mapping cache organization with relevant example.

OR

b Discuss Interprocess synchronization and mutual exclusion with semaphore.

Z-Z-Z

END