TOTAL PAGE : 2 14NDU12 / 14BCV08 / 14BCU08 / 14MBU16

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2018 (Second /Third/ Fourth Semester)

Common to Branches – NUTRITION, FOOD SERVICE MANAGEMENT & DIETETICS / BIOCHEMISTRY & MICROBIOLOGY

MATHEMATICS

Time : Three Hours

Maximum : 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(10 \times 2 = 20)$

- 1 Write the characteristic equation of a matrix.
- 2 If the matrix B is similar to the matrix A, then prove that A and B have the same characteristic equation.
- 3 Write the expansion of tan $n\theta$ in powers of tan θ .
- 4 Show that the error involved in replacing $\frac{1}{6}(8 \sin \theta \sin 2\theta)$ by θ is

approximately $\frac{1}{30}\theta^5$ if θ is small.

- 5 Show that (1, 2, 8), (0, 3, 4), (1, 1, 3) and (2, 0, 7) are the vertices of a parallelogram.
- 6 Find the angle between the planes 2x y + z = 6, x + 2y + 2z = 3.
- 7 Prove that $(1 + \Delta)(1 \nabla) = 1$.
- 8 When Newton's backward interpolation formula is used?
- 9 When does Simpson's give exact result.
- 10 Write the Newton's forward difference formula to compute the derivatives.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

11 a Find the characteristic equation of A = $\begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$ and show that the

matrix A satisfies the characteristic equation.

OR

b Find the Eigen value and the Eigen vector of the matrix.

OR

 $\mathbf{A} = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}.$

Express $\frac{\sin 6\theta}{\sin \theta}$ interms of $\cos \theta$.

12 a

b

Evaluate $\lim_{x \to \frac{\pi}{2}} \frac{\sin x + \cos 2x}{\cos^2 x}$.

Page 2

13 a Find the equation of the plane passing through the points (3, 1, 2), (3, 4, 4)an perpendicular to the plane 5x + y + 4z = 0.

OR

- b Find the equation of the plane through the point (1, -2, 3) and the intersection of the planes 2x y + 4z = 7 and x + 2y 3z + 8 = 0.
- 14 a Find the cubic polynomial y(x) such that y(0) = -5, y(1) = 1, y(2) = 9, y(3) = 25, y(4) = 55, y(5) = 105.

OR

b Using Newton's forward interpolation formula, calculate f(1.02) up to 3 decimal places in the table given below.

15 a From the following table values of x and y find dy/dx and d^2y/dx^2 at x = 1.05.

x :	1	1.05	1.1	1.15	1.2	1.25	1.3	
у:	1	1.025	1.049	1.072	1.095	1.118	1.14	
	OR				~			

b Using Newton's divided difference formula, find f(4) given that f(0) = 2, f(1) = 3, f(2) = 12 and f(15) = 3587.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry EQUAL Marks $(3 \times 10 = 30)$

		2	- 2	3	
16	Diagonalize the matrix	1	1	1	
		1	3	- 1	

- 17 If α , β , γ be the roots of the equation $x^3 + px^2 + qx + p = 0$, prove that $\tan^{-1}\alpha + \tan^{-1}\beta + \tan^{-1}\gamma = n\pi$ radians except when q = 1.
- 18 A line makes angle α , β , γ , δ with the four diagonals of a cube. Prove that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3}$.
- 19

Using Lagrange's interpolation formula, find y(2) from the following data.

x: 0 1 3 4 5 y: 0 1 8 256 625

20

Dividing the range into 10 equal parts, find the value of $\int_{0}^{5} \sin x \, dx$ by (i) Trapezoidal rule (ii) Simpson's rule.

Z-Z-Z