PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2018

(Third Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

CLASSICAL ALGEBRA & TRIGONOMETRY

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 Define Symmetric function of the roots.
- 2 Define Reciprocal equation.
- 3 Define Convergent sequence.
- 4 Define Dedikind's theorem.
- 5 Define D Alembert's ratio.
- Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^3 + n^4 x^2}$ is uniformly convergent for all values of x.
- 7 Expand $\cos \theta$.
- 8 Verify $\sinh 2x = 2 \sinh x \cosh x$.
- 9 Find log(x+iy).
- 10 Prove that $2\sqrt{3}\left[1-\frac{1}{3}+\frac{1}{5}\cdot\frac{1}{3^2}-\frac{1}{7}\cdot\frac{1}{3^3}+...\right]=\pi$.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

- Solve the equation $x^4-5x^3+4x^2+8x-8=0$ given that one of the roots is $1-\sqrt{5}$.
 - b If α, β, γ are the roots of the equation $x^3+ax^2+bx+c=0$ from the equation whose roots are $\alpha\beta, \beta\gamma$ and $\gamma\alpha$.
- 12 a Show that $\left\{\frac{n}{n+1}\right\}$ is a monotonic increasing sequence.

OR

- b Show that the series $1 + \frac{1}{2} + \frac{1}{3} + \dots$ is divergent.
- 13 a Discuss the convergence of the series $\sum (-1)^{n-1} \cdot \frac{1}{n^p}$ when 0 .

OR

- b Show that the series $\sum_{1}^{\infty} \frac{x}{n(1+nx^2)}$ is uniformly convergent for all values of x.
- 14 a Express $\cos 8\theta$ in terms of $\sin \theta$.

OR

- b Separate into real and imaginary parts of $\tanh(1+i)$.
- Deduce the expansion of tan⁻¹x in powers of x from the expansion of log(a+ib)

 Ω R

b Prove that $\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3} = \frac{\pi}{4}$.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry EQUAL Marks $(3 \times 10 = 30)$

- Solve the equation $81x^3-18x^2-36x+8=0$ whose roots are in harmonic progression.
- Find the limit of the sequence $\{a_n\}$ where $a_n = \left(1 + \frac{1}{n}\right)^n$
- Test for convergency and divergency of the series $1 + \frac{2x}{2!} + \frac{3^2x^2}{3!} + \frac{4^3x^3}{4!} + \frac{5^4x^4}{5!} + \dots$
- 19 If $\tan(x+y)=u+iv$, prove that $\frac{u}{v} = \frac{\sin 2x}{\sinh 2y}$.
- Sum the series $\sin^3 \frac{\theta}{3} + 3\sin^3 \frac{\theta}{3^2} + 3^2\sin^3 \frac{\theta}{3^3} + \dots$ to n terms.

Z-Z-Z

END