14MCU01

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2018

(First Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

CALCULUS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- Write the conditions for f(x,y) attains a maximum at (a,b).
- 2 If x^3+y^3+3axy , find $\frac{dy}{dx}$.
- Write the Cartesian formula for radius of curvature.
- 4 Define Evolute.
- If f(x) is an odd function of x, then prove that $\int_{0}^{a} f(x)dx = 0$
- 6 Find the value of $\int_{0}^{\pi/2} \sin^{7} x dx$
- 7 Evaluate $\iint_{0}^{1/2} (x^2 + y^2) dy dx$.
- 8 Define Triple Integrals.
- 9 Find the value of $\sqrt{(n+1)}$
- 10 Prove that $\beta(m,n) = \beta(n,m)$

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a Find
$$\frac{du}{dx}$$
 when $u=x^2+y^2$ where $y=\frac{1-x}{x}$.

OR

- b Find the maximum or minimum values of $2(x^2-y^2)-x^4+y^4$.
- 12 a Find the envelope of the circles drawn on the radius vectors of the ellipse $\frac{x^2}{\sigma^2} + \frac{y^2}{h^2} = 1$ as diameter.

OR

- b Prove that the radius of curvature at the point $x=3a\cos\theta-a\cos3\theta$, $y=3a\sin\theta-a\sin3\theta$ is $3a\sin\theta$.
- 13 a Prove that $\int_{0}^{\frac{\pi}{4}} \log(1 + \tan \theta) d\theta = \frac{\pi}{8} \log 2$

OR

- b Evaluate $\int x^3 \cos 2x dx$.
- 14 a Evaluate $\iint (x^2 + y^2) dx dy$ over the region for which x,y are each ≥ 0 and $x+y \le 1$

OR

b By changing the order of integration, evaluate $\iint_{V}^{\infty} \frac{e^{-y}}{v} dxdy$.

15 a Evaluate
$$\int_{0}^{\infty} e^{-x^2} dx$$
.

b Prove that
$$\beta(m,n) = \frac{OR}{(m)(n)}$$
.

SECTION - C (30 Marks)

Answer any **THREE** Questions **ALL** Questions Carry **EQUAL** Marks (3 x 10 = 30)

- A tent having the form of a cylinder surmounted by a cone is to contain a given volume. If the canvas required is minimum, show that the altitude of the cone is twice that of the cylinder.
- Show that the evolute of the cycloid $x=a(\theta-\sin \theta)$; $y=a(1-\cos \theta)$ is another cycloid.
- 18 If $I_{m,n} = \int x^m (\log x)^n dx$ prove that $I_{m,n} = (\log x)^n \frac{x^{m+1}}{m+1} \frac{n}{m+1} I_{m,n-1}$ and hence evaluate $\int x^4 (\log x)^3 dx$
- Evaluate $\iiint xyzdxdydz$ taken through the positive octant of the sphere $x^2+y^2+z^2=a^2$.
- Evaluate the integral $\iint x^p y^q dy dx$ over the triangle x>0, y>0, x+y\le 1 in terms of Gamma functions.

Z-Z-Z

END