PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2018

(Fourth Semester)

Branch – MATHEMATICS WITH COMPUTER APPLICATIONS ANALYTICAL GEOMETRY OF 3D & VECTOR CALCULUS

Time: Three Hours Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks $(10 \times 2 = 20)$

- State the normal form of the equation of a plane.
- Find the equation of the plane passing through the intersection of the planes x + y + z = 6 and 2x + 3y + 4z + 5 = 0 and the point (1, 1, 1).
- Find the equation of the line which passes through the point (2, 1, 1) and intersects the lines 2x + y 4 = 0 = y + 2z; x + 3z = 4, 2x + 5z = 8.
- Find the perpendicular distance of the point p(1, 2, 3) from the line (x-6)/3 = (y-7)/2 = (z-7)/-2.
- Find the radius and centre of the sphere $x^2 + y^2 + z^2 2x + 4y 6z = 2$.
- Find the equation of the sphere through the circle $x^2 + y^2 + z^2 = 9$, 2x + 3y + 4z = 5 and the point (1, 2, 3).
- Find the directional derivative of $x^2yz + 4xz^2 + xyz$ at (1, 2, 3) in the direction of vector 2i + j k.
- 8 Prove that $A = 3y^4z^2i + 4x^2z^2j 3x^2y^2k$ is solenoidal.
- 9 State Green's theorem in the plane.
- If $A = (5xy 6x^2)i + (z^2 4x)j$, evaluate $\int A dx$ where c is the curve $y = x^3$ in the xy plane from the point (1, 1) to (2, 8).

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

- Find the equation of the plane through the points P(2, 2, -1), Q(3, 4, 2), R(7, 0, 6).
 - b Find the area of the triangle whose vertices are the points (1, 2, 3), (-2, 1, -4), (3, 4, -2).
- Find the image of the point p(1, 3, 4) in the plane 2x y + z + 3 = 0.
 - Show that the lines (x + 3)/2 = (y + 5)/3 = (z 7)/(-3), (x+1)/4 = (y+1)/3 = (z+1) (-1) are coplanar, and then find the equation of the plane containing them.
- Show that the two circles $x^2 + y^2 + z^2 y + 2z = 0$, x y + z 2 = 0, and $x^2 + y^2 + z^2 + x 3y + z 5 = 0$, 2x y + 4z 1 = 0 lie on the same sphere and find its equation.

OR

b Find the equation of the sphere which touches the sphere $x^2 + y^2 + z^2 - x + 3y + 2z - 3 = 0$ at the point (1, 1, -1) and passes through the origin.

Cont ...

Find the angle between the surfaces $Z = x^2 + y^2 - 3$ and $x^2 + y^2 + z^2 = 9$ at (2, -1, 2).

OR '

- b Prove that div curl F = 0.
- Verify Stoke's theorem for $F = (2x y)i + yz^2j y^2zk$ where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and c is the circular boundary on z = 0 plane.

OR

b Prove that the area bounded by a simple closed curve C is given by $\frac{1}{2} \int x dy - y dx$. Hence find the area of an ellipse.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry **EQUAL** Marks $(3 \times 10 = 30)$

- Find the equation of the plane through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 9.
- Find the magnitude and the equation of the lines of shortest distance between the lines (x-8)/3 = (y+9)(-16) = (z-10)/7. (x-15)/3 = (y-29)/8 = (z-5)/(-5).
- Find the equations of the sphere through the points (0, 0, 0), (0, 1, -1), (-1, 2, 0), (1, 2, -3).
- Determine f(r) so that the vector (f(r)) r is both solenoidal and irrotational.
- Verify the Gauss divergence theorem for $F = xi + y^2j + z^2k$ taken over the cube bounded by planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

Z-Z-Z

END