PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2018

(Sixth Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

OPERATIONS RESEARCH

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 Define an optimum solution of a problem.
- Write the standard primal and dual problem.
- Write a necessary and sufficient condition for the existence of a feasible solution to the general transportation problem.
- 4 Define loops in transportation tables.
- 5 Define two person zero sum games.
- 6 Define saddle point in a game.
- Write the types of errors in logical sequencing while drawing a network diagram.
- 8 Define a critical path.
- 9 What are the basic elements of a queuing system?
- In (M|M|1): $(\infty | FIFO)$ model, write the value of E(n).

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

Solve the following LPP by graphical method minimize $Z = 20x_1 + 40x_2$ subject to the constraints:

$$36x_1 + 6x_2 \ge 108$$
; $3x_1 + 12x_2 \ge 36$; $20x_1 + 10x_2 \ge 100$ and $x_1, x_2 \ge 0$.

b Obtain the dual problem of the following primal problem: Minimize $z = x_1 - 3x_2 - 2x_3$ subject to the constraints $:3x_1 - x_2 + 2x_3 < 7$; $2x_1 - 4x_2 > 12$; $-4x_1 + 3x_2 + 8x_3 = 10$; $x_1, x_2 > 0$ and x_3 is unrestricted.

12 a Obtain an IBFS to the following transportation problem using the North – West corner rule

	D	Е	F	G	Available
A	11	13	17	14	250
В	16	18	14	10	300
C	21	24	13	10	400
Requirement	200	225	275	250	<u> </u>

OR

b Solve the following assignment problem

$$\begin{bmatrix} M_1 & M_2 & M_3 & M_4 \\ J_1 & 5 & 7 & 11 & 6 \\ J_2 & 8 & 5 & 9 & 6 \\ J_3 & 4 & 7 & 10 & 7 \\ J_4 & 10 & 4 & 8 & 3 \end{bmatrix}$$

How should the jobs be assigned to the various machines so that the total cost is minimized?

Determine which of the following two-person zero-sum games are strictly determinable and fair. Give optimum strategies for each player in the case of strictly determinable games:

Player B B
(a) Player A
$$\begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix}$$
 (b) A $\begin{bmatrix} 0 & 2 \\ -1 & 4 \end{bmatrix}$
OR

- b For the game with the following payoff matrix, determine the optimum strategies and the value of the game : $P_1\begin{bmatrix} 5 & 1 \\ 3 & 4 \end{bmatrix}$.
- 14 a Write the rules of network construction.

OR

b A project consists of eight activities with the following relevant information.

	Activity	Immediate	Estimated duration (days)				
	•	Predecessor	Optimistic	Most likely	Pessimistic		
	A	-	1	1	7		
	В	-	. 1	4	7		
	C	-	2	2	8		
	D	Α	1	1	1		
•	\mathbf{E}	В	2	5	14		
	\mathbf{F}	С	2	5	8		
	G	D, E	3	± 6	15		
	H	F, G	1	2	3		

Draw the PERT network and find out the expected project completion time.

15 a Write about distribution of arrivals (Pure Birth process).

OR

b A road transport company has one reservation clerk on duty at a time. He handles information of bus schedules and makes reservations. Customers arrive at a rate of 8 per hour and the clerk can service 12 customers on an average per hour. After stating your assumptions, answer the following: What is the average number of customers waiting for the service of the clerk.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry EQUAL Marks $(3 \times 10 = 30)$

16 Use duality to solve the following LPP:

Maximize $Z = 2x_1 + x_2$ subject to the constraints:

$$x_1 + 2x_2 < 10, x_1 + x_2 < 6,$$

 $x_1 - x_2 < 2, x_1 - 2x_2 < 1, x_1, x_2 > 0.$

17 Solve the following transportation problem by using Modi method.

Available units

required unit 85 35 50 45

Obtain the optimal strategies for both-persons and the value of the game for zero-sum two-person game whose payoff matrix is as follows:

$$\begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 6 \\ 4 & 1 \\ 2 & 2 \\ -5 & 0 \end{bmatrix}$$

A project consists of a series of tasks labeled A, B, ..., H, I with the following relationships (W < X, Y means X, and Y cannot start until W is completed; X, Y < W means W cannot start until both X and Y are completed). With this notation construct the network diagram having the following constraints:

 $A \le D,E; B, D \le F; C \le G; B, G \le H, F, G \le I$. Find also the minimum time of completion of the project, when the time (in days) of completion of each task is as follows:

Task:	A	В	C	D	E	F	G	Н	I
Time:	23	8	20	16	24	18	19	4	10

A supermarket has two girls serving at the counters. The customers arrive in a Poisson fashion at the rate of 12 per hour. The service time for each customer is exponential with mean 6 minutes. Find (i) the probability that an arriving customer has to wait for service, (ii) the average number of customers in the system, and (iii) the average time spent by a customer in the super-market.

Z-Z-Z

END