PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2018

(Sixth Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

LINEAR ALGEBRA

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer **ALL** questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

If
$$P = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$$
, prove that $P^t P = PP^t$.

- Define the rank of a matrix A. 2
- 3 -Define a vector space.
- Prove that W^{\perp} is a subspace of V, if W is a subset of a vector space V. 4
- 5 Define the extension of a field F and the degree of the extension field.
- 6 State Remainder theorem.
- 7 Define an algebra.
- 8 Define a characteristic root and a characteristic vector.
- 9 Define similar linear transformations.
- 10 Prove that $T \in A(V)$ is unitary if and only if $TT^* = 1$.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a Show that
$$U = \frac{1}{2} \begin{bmatrix} 1+i & -1+i \\ 1+i & 1-i \end{bmatrix}$$
 is an unitary matrix.

OR

b Find the rank of the matrix
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 \\ 0 & 3 & 4 & 2 \end{bmatrix}$$
.

12 a If V is a vector space over F, prove the following:

(i)
$$\alpha$$
 o = o for $\alpha \in F$ (ii) ov = o for $v \in V$

(ii) ov = o for
$$v \in V$$

(iii)
$$(-\alpha)$$
 $v = -(\alpha v)$ for $\alpha \in F$, $v \in V$

(iv) if
$$v \neq 0$$
, then $\alpha v = 0$ implies that $\alpha = 0$.

OR

- If $u \in V$ and $\alpha \in F$, prove that $||\alpha u|| = |\alpha| ||u||$. b
- 13 a If a, b in k are algebraic over F, prove that $a \pm b$, ab, and a/b (if $b \ne 0$) are all algebraic over F.

OR

If P(x) is a polynomial in F[x] of degree n > 1 and is irreducible over F, b prove that there is an extension E of F, such that [E : F] = n, in which p(x)has a root.

14 a If V is finite – dimensional over F, prove that $T \in A(V)$ is regular if and only if T maps V onto V.

OR

- b If $\lambda_1,...,\lambda_k$ in F are distinct characteristic roots of $T \in A(V)$ and $v_1,...,v_k$ are characteristic vectors of T belonging to $\lambda_1,...,\lambda_k$, respectively, prove that $v_1,...,v_k$ are linearly independent over F.
- 15 a If V is n-dimensional over F and if $T \in A(V)$ has all its characteristic roots in F, prove that T satisfies a polynomial of degree n over F.

OR

b If $T \in A(V)$ is such that (v, T, v) = 0 for all $v \in V$, prove that T = 0.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry EQUAL Marks $(3 \times 10 = 30)$

Verify Cayley – Hamilton theorem for A and hence find A⁻¹, where

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}.$$

- If V is a finite dimensional and if W is a subspace of V, prove that W is finite dimensional, dim $W \le \dim V$, and dim $V/W = \dim V \dim W$.
- If L is a finite extension of K and if K is a finite extension of F, prove that L is a finite extension of F, and [L:F] = [L:K] [K:F].
- 19 If A is an algebra, with unit element, over F, prove that A is isomorphic to a sub algebra of A(V) for some vector space V over F.
- If $T \in A(V)$ has all its characteristic roots in F, prove that there is a basis of V in which the matrix of T is triangular.

Z-Z-Z

END