14MCC1/

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2018

(Fifth Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

ABSTRACT ALGEBRA

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- Define an Abstract Algebra.
- 2 Define a Subgroup.
- 3 Define an Isomorphism.
- 4 Define a Automorphism.
- 5 Define a Division rings.
- 6 Define a Ideal ring.
- 7 Define a Relatively prime.
- 8 Define a Prime element.
- 9 Define a Primitive.
- Define a unique factorization domain.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a Show that there is a one-to-one correspondence between any two right cosets of H in G.

OR

- b Prove that HK is a subgroup of G if HK=KH.
- 12 a Stat and prove Cayley's theorem.

OR

- b Prove that every permutation is the product of its cycles.
- 13 a If P is a prime number then show that J_p the ring of integers mod P, is a field.
 - b If ϕ is a homomorphism of R into R¹ then prove that
 - $(i) \phi(0) = 0$

(ii) $\phi(-a) = -\phi(a)$ for every $a \in R$

14 a State and prove the Fermat theorem.

OR

- b If R is a communicative ring with unit element and M is an ideal of R then prove that M is a maximal ideal of R if R/M is a field.
- 15 a State and prove Eisentian criterion theorem?

OR

b Prove that if R is a unique factorization domain so is R[x].

SECTION - C (30 Marks)

Answer any **THREE** Questions

ALL Questions Carry EQUAL Marks $(3 \times 10 = 30)$

- Prove that the subgroup N of G is a normal subgroup of G iff every left coset of N in G is a right coset of N in G.
- 17 State and prove Cauchy's theorem for abelian groups.
- 18 If U is an ideal of the ring R then show that R/U is a ring and is a homomorphic image of R.
- 19 State and prove unique Factorization theorem.
- If f(x), g(x) are two non-zero elements of F(x) then show that deg.(f(x) g(x)=deg f(x)+deg g(x).