PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2018

(Third Semester)

Branch - **ELECTRONICS**

DIGITAL PRINCIPLES & APPLICATIONS

Time: Three Hours Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- What is the decimal number for binary number $(1010)_2$?
- 2 Define Gray Code.
- Give the truth table for 2 inputs NOR gate.
- 4 State Duality theorem.
- 5 What is Demultiplexes?
- 6 What is signed binary number?
- 7 Define Register.
- 8 What is forbidden?
- 9 Draw the state diagram of mod 5 counter.
- 10 Define Resulation.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

11 a Write a short note on Excess three, EBCDIC, and Gray codes.

OR

- b Explain the procedure for BCD addition.
- 12 a Explain the distributive laws of Boolean algebra.

OR

- b Give an example and explain the don't care condition in K-map.
- 13 a Perform the following function using is complement.

(i) (+17)+(-14)

 $(ii)(\pm 12) \pm (-18)$

OR

- b Draw the logic diagram of a 1 out of 4 decoder and explain its working.
- 14 a Explain the function of a four stage ring counter using J_K flip flop.

OR

- b Design a synchronous mod 3 counter and explain its working with its truth table.
- 15 a Explain with diagram of the binary weighted resistor D/A converter.

OR

b Draw the counter type A/D converter and explained it.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry EQUAL Marks $(3 \times 10 = 30)$

- Find the Hexa-decimal equivalent of decimal
 - (i) $(88.525)_{10}$
- $(ii) (139)_{10}$
- $(iii)(45.65)_{10}$
- 17 State and prove Demorgan's theorem.
- Explain the operation of multiplexer with neat circuit diagram.
- Explain RS flip flop and SR flip flop using NOR gates.
- Describe the counter type A/D converter using operational amplifiers.

77.7