PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2018

(Second Semester)

Branch - ELECTRONICS

MATHEMATICS - II

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

1 Write down the middle term of
$$\left(x - \frac{2}{x}\right)^{12}$$
.

2 Prove that
$$a^x = 1 + \frac{x \log_e a}{1!} + \frac{x^2}{2!} (\log_e a)^2 + \dots$$

- Define a periodic function.
- Define an even functions of Fourier series.
- Prove that $F\{e^{iax} f(x)\} = F(s+a)$.
- Define Parsival's identity. 6
- Solve $(D^2 + D + 1)v = 0$. 7
- 8 Define Beta and Gamma functions.
- Gauss-Seidel method is better than Gauss-Jacobi method. Why? 9
- Evaluate $\int_{-1+x^2}^{1} \frac{dx}{1+x^2}$ using Gauss two point formula. 10

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

11 a Resolve
$$\frac{9}{(x-1)(x+2)^2}$$
 into partial fractions.

b Show that
$$(\log 2) - \frac{1}{2!} (\log 2)^2 + \frac{1}{3!} (\log 2)^3 - \dots = \frac{1}{2}$$
.

12 a Determine the Fourier series of
$$f(x) = x$$
 where $-\pi < x < \pi$.

Find the half-range cosine series for the function $f(x) = x^2$, $0 \le x \le \pi$.

b Find
$$F_c\{e^{-ax}\}$$
 and $F_s\{e^{-ax}\}$.

b

b Find
$$F_c\{e^{-ax}\}\$$
and $F_s\{e^{-ax}\}.$
14 a Solve $(D^2 - 4D + 3)y = \sin 3x.$

b Prove that
$$\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$
.

$$2x + 3y - z = 5$$

$$4x + 4y - 3z = 3$$

$$2x - 3y + 2z = 2$$

OR

b Evaluate
$$\int_{0}^{1} \frac{dx}{1+x^2}$$
, using trapezoidal rule with h = 0.2.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry EQUAL Marks $(3 \times 10 = 30)$

$$1 - \frac{1}{4} + \frac{1.3}{4.8} - \frac{1.3.5}{4.8.12} + \dots \infty$$

Obtain the Fourier series to represent the function
$$f(x) = |x|$$
, $-\pi < x < \pi$

and deduce
$$\frac{1}{1^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{8}$$
.

Find the Fourier cosine transform for
$$F(x)$$
 if

$$f(x) = 1$$
 when $|x| < 1$
= 0 when $|x| > 1$

and deduce
$$\int_{0}^{\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}.$$

19 Solve
$$(D^2 + 16) y = e^{-3x} + \cos 4x$$
.

20 Solve the following system of equations

$$30x - 2y + 3z = 75$$

$$x + 17y - 2z = 48$$

$$x + y + 9z = 15$$

using Gauss Jacobi's method.