PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2019

(Second Semester)

Branch - STATISTICS

MATHEMATICS - II

Time: Three Hours

Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 1 = 10)$

The characteristic equation of the matrix A is

(i)
$$|A - \lambda I| = 0$$
 (ii) $|A + \lambda I| = 0$ (iii) $|A - I| = 0$ (iv) $|A + I| = 0$

(ii)
$$|\mathbf{A} + \lambda \mathbf{I}| = 0$$

(iii)
$$|\mathbf{A} - \mathbf{I}| = 0$$

(iv)
$$|\mathbf{A} + \mathbf{I}| = 0$$

Every matrix satisfies its own characteristic equation.

(i) row (ii) column (iii) square (iv) none 2

The solution of $\frac{\partial z}{\partial y} = 0$ is 3

(i)
$$z = f(x)$$
 (ii) $z = f(y)$ (iii) $z = f(z)$ (iv) $z = 0$

(ii)
$$z = f(y)$$

(iii)
$$z = f(z)$$

(iv)
$$z =$$

4 The complete integral of z = px + qy + pq is

(i)
$$z = px + qy$$

(ii)
$$z = ax + b$$

(iii)
$$z = ax + by + a$$

(i)
$$z = px + qy$$
 (ii) $z = ax + by$ (iii) $z = ax + by + ab$ (iv) $z = \frac{x}{a} + \frac{y}{b}$

If f(x) is odd, then $\int_{-a}^{a} f(x)dx = \underline{\hspace{1cm}}$

(i)
$$2\int_{0}^{a}f(x)dx$$

(i)
$$2\int_{0}^{a} f(x)dx$$
 (ii) $\int_{0}^{a} f(x)dx$ (iii) 0 (iv) $\int_{0}^{-a} f(x)dx$

(iv)
$$\int_{0}^{-a} f(x) dx$$

Fourier series for f(x) is 6

(i)
$$a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

(i)
$$a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
 (ii) $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$

(iii)
$$a_0 + \sum_{n=1}^{\infty} (a_n \cos nx - b_n \sin nx)$$
 (iv) $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx - b_n \sin nx)$

(iv)
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx - b_n \sin nx)$$

L(cos at) = _____.
(i)
$$\frac{1}{s+a}$$
 (ii) $\frac{1}{s-a}$ (iii) $\frac{s}{s^2+a^2}$ (iv) $\frac{s}{s^2-a^2}$

(iii)
$$\frac{s}{s^2 + a^2}$$

(iv)
$$\frac{s}{s^2 - a^2}$$

L(t) = ______.
(i)
$$\frac{1}{s}$$
 (ii) $\frac{1}{s^2}$ (iii) $\frac{1}{s^3}$ (iv) 0

(iii)
$$\frac{1}{s^3}$$

9 The direct method for solving simultaneous linear algebraic equation is

(i) Gauss elimination (ii) Gauss Seidel (iii) Gauss Jacobi

(iv) Bisection

10 The rate of convergence in Gauss – Seidel method is roughly times than that of Gauss – Jacobi method.

(i) 2 (ii) 3

(iii) 4

(iv) 5

SECTION - B (25 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 5 = 25)$

Calculate A^4 when $A = \begin{bmatrix} -1 & 3 \\ -1 & 4 \end{bmatrix}$.

OR

Calculate the eigen values of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 2 & 1 & 1 \end{bmatrix}$.

Eliminate the arbitrary function f and ϕ from the relation $z = f(x + ay) + \phi(x - ay)$.

13 a Express f(x) = x, $((-\pi < x < \pi))$ as a Fourier series with period 2π .

Find a sine series for f(x) = c in the range 0 to π .

14 a Show that
$$L(t^2 \cos at) = \frac{2s(s^2 - 3a^2)}{(s^2 + a^2)^3}$$
.

b Calculate $L^{-1} \left[\frac{1}{s(s+1)(s+2)} \right]$.

15 a Solve the system of equations by Gauss elimination method:

$$x + 2y + z = 3$$

 $2x + 3y + 3z = 10$
 $3x - y + 2z = 13$

OR

Explain Gauss elimination method.

SECTION -C (40 Marks)

Answer ALL questions

ALL questions carry **EQUAL** Marks $(5 \times 8 = 40)$

Examine the characteristic equation of the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and hence obtain its inverse.

b Evaluate the matrix
$$A^4 - 4A^3 - A^2 + 2A - 5I$$
, were $A = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$.

17 a Solve
$$p^2 + q^2 = npq$$

OR

b Solve
$$(y^2 + z^2)p - xyq = -xz$$
.

18 a Show that
$$x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$$
 in the interval $-\pi \le x \le \pi$.

b If
$$f(x) = \begin{cases} -x & \text{in } -\pi < x < 0 \\ x & \text{in } 0 < x < \pi \end{cases}$$
, then expand $f(x)$ as a Fourier series in the interval $-\pi$ to π .

19 a (i) Find $L(t^2 + 2t + 3)$.

(ii) Find
$$L^{-1} \left[\frac{s}{(s+3)^2 + 4} \right]$$
.

b Solve the equation
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{3x}$$
.

20 a Solve the following system of equations by using Gauss – Jacobi method to correct to 3 decimal places.

$$8x - 3y + 2z = 20$$

 $4x + 11y - z = 33$

$$6x + 3y + 12z = 35$$

OR

Solve the following system of equations by Gauss – Seidel method to correct to three decimal places:

$$x + y + 54z = 110$$

$$27x + 6y - z = 85$$

$$6x + 15y + 2z = 72$$