TOTAL PAGES: 2 14MCU25

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2019

(Sixth Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

COMPLEX ANALYSIS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks $(10 \times 2 = 20)$

- Define continuity of f(z) at z_0 .
- 2 Show that f(z) = z is nowhere differentiable.
- 3 Define critical point of f(z).
- If f(z) is analytic function, then prove that $\frac{\partial(u,v)}{\partial(x,y)} = |f'(z)|^2$. 4
- Evaluate $\int \frac{z}{z-2} dz$ where C is the circle |z| = 1. 5
- State Cauchy's theorem. 6
- Find the Zeros of $f(z) = \frac{z^3 1}{z^3 + 1}$. 7
- State Schwarz lemma. 8
- 9 State Jordan's lemma.
- Find the residue of cot z at z = 0. 10

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

Show that $u = \frac{1}{2} \log(x^2 + y^2)$ is harmonic and find its conjugate. 11 a

- Show that an analytic function in a region with constant modules is constant.
- 12 a i) Define the inverse of a point with respect to a circle.
 - ii) Write any three elementary transformation.

- Find the in inverse point of the infinite strips $\frac{1}{4} < y < \frac{1}{2}$ under the b transformation $w = \frac{1}{2}$.
- Evaluate $\int \frac{zdz}{z^2-1}$ where C is positively oriental circle |z|=2. 13 a

- b State and prove Morera's theorem.
- 14 a State and prove Liouville's theorem.

b State and prove maximum modulus principle. 15 a State and prove Cauchy's Residue theorem.

b Find the residue of $\frac{1}{(z^2+1)^3}$ at z=i.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry EQUAL Marks (3 x 10 = 30)

- 16 State and prove Cauchy Riemann equation.
- Let f(z) be an analytic function of z in a region D of the Z-plane and let $f'(z) \neq 0$ inside D. Prove that the mapping w = f(z) is conformal at the points of D.
- 18 State and prove Poisson's integral formula of a circle.
- 19 State and prove Taylor's theorem.
- Evaluate $\int_{0}^{\infty} \frac{x^2 dx}{x^6 + 1}$.

Z-Z-Z

END