PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2019

(Third Semester)

Branch - MATHEMATICS WITH COMPUTER APPLICATIONS

CLASSICAL ALGEBRA AND TRIGONOMETRY

Time: Three Hours Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks $(10 \times 2 = 20)$

- Express the symmetric function of the roots $x^3 + px^2 + qx + r = 0$ if α, β and γ are the roots.
- 2 Define Reciprocal equation.
- 3 Define Dedikind's theorem.
- 4 Define monotonic increasing sequence.
- Show that the series $\sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}$ is uniformly convergent for all values of x.
- 6 State Raabe's test.
- 7 Expand $\sin n\theta$.
- 8 Verify $\cos h^2 x \sin h^2 x = 1$.
- 9 Find $\log (1-i)$.
- 10 Prove that $2\sqrt{3}\left[1 \frac{1}{3} + \frac{1}{5} \cdot \frac{1}{3^2} \frac{1}{7} \cdot \frac{1}{3^3} + \dots\right] = \pi$.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks (5 x 5 = 25)

- 11 a Frame an equation with rational coefficients, one of whose roots is $\sqrt{5} + \sqrt{2}$.

 OR
 - b If α, β and γ are the roots of the equation $x^3 + ax^2 + bx + c = 0$ from the equation whose roots are $\alpha\beta$, $\beta\gamma$ and $\gamma\alpha$.
- 12 a Show that $\left\{\frac{n}{n+1}\right\}$ is a monotonic increasing sequence.

OR

- b Prove that $1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$ is convergent.
- 13 a Test for convergence of the series $a + b + a^2 + b^2 + a^3 + b^3 + \dots$ OR
 - b Examine the convergence of $\frac{1^2}{2^2} + \frac{1^2 \cdot 3^2}{2^2 \cdot 4^2} + \frac{1^2 \cdot 3^2 \cdot 5^2}{2^2 \cdot 4^2 \cdot 6^2} + \dots$
- 14 a Find the equation, whose roots are $\tan \frac{\pi}{5}$, $\tan \frac{2\pi}{5}$, $\tan \frac{3\pi}{5}$ and $\tan \frac{4\pi}{5}$.

OR

b Prove that $\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$.

_1 1

15 a Find the sum of the series $\cos ec\theta + \csc 2\theta + \csc 2^2\theta + \cos ec 2^{n-1}\theta$.

OR

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry EQUAL Marks (3 x 10 = 30)

Solve the equation
$$6x^5 - x^4 - 43x^3 + 43x^2 + x - 6 = 0$$
.

Find the limit of the sequence
$$\{a_n\}$$
 where $a_n \left(1 + \frac{1}{n}\right)^n$.

18 Discuss the convergency of the series
$$\frac{1}{1+x} + \frac{1}{1+2x^2} + \frac{1}{1+3x^3} + \frac{1}{1+4x^4} + \dots$$

- 19 Separate into real and imaginary parts of $tan^{-1}(x+iy)$.
- Sum the series: Sin h x + sin h(x + y) + sin h (x + 2y) + to n terms

Z-Z-Z

END