PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2019

(First Semester)

Branch - MATHEMATICS

<u>DIFFERENTIAL EQUATIONS & LAPLACE TRANSFORM</u>

Maximum: 75 Marks Time: Three Hours **SECTION-A (10 Marks)** Answer **ALL** questions **ALL** questions carry **EQUAL** marks $(10 \times 1 = 10)$ 1 The order of a differential equation is the order of the _____ derivative that appears in it. (i) Higher (ii) Lower (iii) Middle (iv) None of these The first order differential equation of the form $\frac{dy}{dx} + p(x)y = Q(x)y^n$ is called 2 **Exact equation** (ii) Laplace equation (iii) Bernoulli's equation (iv) None of these 3 W (cos x, sinx) is (i) 0 (ii) 1 (iii) -1 (iv) None of these The characteristic equation of $y^{(3)} + 3y'' - \log' = 0$ is (i) $r^3 + 3r^2 - 10r = 0$ (ii) $r^3 + 3r^2 - 10 = 0$ (iii) $r^3 + 3r - 10r = 0$ (iv) None of these 4 (iv) None of these Complementary function of $y'' - 3y' + 2y = e^{2x}$ is (i) $C_1e^x + c_2e^{2x}$ (ii) $C_1 + C_2x^{ex}$ (iii) $C_1 + C_2xe^{2x}$ 5 (iv) None of these The general n^{th} order linear equation with constant coefficients has the form $a_n y^{(n)} + a_n + y^{(n-1)} + \dots + a_1 y^1 + a_0 y = f(x)$. 6 (i) Homogeneous (ii) Exact (iii) Non homogeneous (iv) None of these 7 L(sinkt) (i) $\frac{s}{s^2 + k^2}$ (ii) $\frac{k}{s^2 + k^2}$ (iii) $\frac{s}{s^2 - k^2}$ (iv) $\frac{k}{s^2 - k^2}$ $L^{-1}\left(\frac{1}{(s-a)^2}\right)$ is (i) $t e^{-at}$ (ii) $t e^{at}$ (iii) $t^2 e^{at}$ (iv) None of these 9 If $L\{f(t)\}$ exists for s > c then L(u(t-a)) is (i) $e^{as} f(s)$ (ii) $e^{-as} f(s)$ (iii) $e^{as} f'(s)$ (iv) None of these $L\{t^n f(t)\}$ is 10 (i) $F^{n}(s)$ (ii) $(-1)^{n} F^{(n)}(s)$ (iii) $\frac{1}{t} F^{n}(s)$ (iv) None of these SECTION - B (25 Marks)
Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 5 = 25)$

11 a Solve the initial value problem $\frac{dy}{dx} = 2x + 3$, y(1) = 2.

b Suppose that at time t = 0, 10 thousand people in a city with population M = 100 thousand people have heard a certain rumor. After 1 week the number p(t) of those who have heard it has increased to p(1) = 20 thousand. Assuming that p(t) satisfies a logistic equation, when will 80% of the city's " ommetation bosed board the mimor?

12 a Find the general solution of
$$2y - iy = 3y = 0$$
.

OR

b $y_p = 3x$ is a particular solution of y'' + 4y = 12x and $y_c(x) = c_1 \cos 2x + c_2 \sin 2x$ is its complementary function. Find the solution of y'' + 4y = 12x that satisfies y(0) = 5, y'(0) = 7.

13 a Find a particular solution of
$$y'' - 4y = 2e^{3x}$$
.

OR

b Determine the appropriate form for a particular solution of $y'' + 6y' + 13y = e^{-3x} \cos 2x$.

14 a Find L
$$\{3e^{2t} + 2\sin^2 3t\}$$
.

OR

b Show that
$$L\{t e^{at}\} = \frac{1}{(s-a)^2}$$

15 a Find L-1
$$\{\tan^{-1}(\frac{1}{s})\}$$
.

OR

b Find L{f(t)} if f(t) =
$$\begin{cases} \cos 2t & \text{if } 0 \le t < 2\pi \\ 0 & \text{ift} \ge 2\pi \end{cases}$$

SECTION -C (40 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks
$$(5 \times 8 = 40)$$

16 a Solve 2xy
$$\frac{dy}{dx} = 4x^2 + 3y^2$$
.

OR

- b Consider an animal population p(t) that is modeled by $\frac{dp}{dt} = 0.0004p$ (p-150). Find p(t) if (i) p(0) = 200 (ii) p(0) = 100.
- 17 a Verify that the functions $y_1(x) = e^x$ and $y_2(x) = xe^x$ are solutions of y'' 2y' + y = 0 and then find a solution satisfying the initial conditions y(0) = 3, y'(0) = 1.

OR

- b Find the particular solution of y'' 4y' + 5y = 0 for which y(0) = 1 and y'(0) = 5.
- 18 a Solve the initial value problem $y'' - 3y' + 2y = 3e^{-x} - 10 \cos 3x;$ y(0) = 1 y'(0) = 2.

 $\bigcap \mathbb{R}$

- b Find a particular solution of $y^{(3)} + y'' = 3e^x + 4x^2$.
- 19 a Solve the initial value problem $x'' + 4x = \sin 3t$; x(0) = x'(0) = 0.

OR

- b Solve the initial value problem $y'' + 4y' + 4y = t^2$; y(0) = y'(0) = 0.
- 20 a Find L⁻¹ $\left(\frac{2s}{(s^2-1)^2}\right)$.

OR

b Consider a mass on a spring with m = k = 1 and x(0) = x'(0) = 0. At each of the instants $t = 0, \pi, 2\pi, 3\pi, \dots, n\pi$ The mass is struck a hammer below with a unit impulse. Determine the resulting motion.