14MAU20

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2019

(Sixth Semester)

Branch - MATHEMATICS

COMPLEX ANALYSIS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 When you say a curve is simple?
- 2 Define a continuous function in the bounded closed domain D...
- 3 Define Conformal Mapping.
- 4 Give an example for a transformation which is isogonal but not conformal.
- 5 When an arc is said to be differentiable?
- 6 State Gauss's mean value theorem.
- 7 Define an entire function.
- 8 When we say the singularity is isolated essential?
- What is the formula for Residue of $\frac{\phi(z)}{(z-a)^m}$ at z=a?
- Write Jordan's inequality.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

11 a Prove that read and imaginary parts of an analytic function satisfy Laplace's equation.

OR

- b If $u=(x-1)^3-3xy^2+3y^2$, determine v so that u+iv is a regular function of x+iy.
- Prove that for the transformation w=z+(1-i) and determine the region D¹ of the w-plane corresponding to the rectangular region D in the z-plane bounded by x=0, y=0, x=1 and y=2.

OR

- b Prove that the superficial magnification of the conformal transformation w=f(z) is $|f'(z)|^2$.
- 13 a Evaluate $\int_{L} \frac{dz}{z-a}$ where L represents a circle |z-a|=r.

OR

- b State and prove Cauchy's fundamental theorem.
- 14 a State and prove Liouville's theorem.

OR

b Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in a Laurent's series valid for the regions

(i) |z| < 1

(ii) |z| > 3

Cont...

15 a Find the residue of
$$\frac{1}{(z^2+1)^3}$$
 at z=i.

b State and prove Jordan's Lemma.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry **EQUAL** Marks $(3 \times 10 = 30)$

- Derive the polar form of Cauchy-Riemann equations.
- Derive the necessary conditions for w=f(z) to represent a conformal mapping.
- 18 State and prove Poisson's integral formula for a circle.

For the function
$$f(z) = \frac{2z^3 + 1}{z^2 + z}$$
 find

- (i) a taylor series valid in the neighbourhood of the point z=i.
- (ii) a Laurent's series valid within the annulus of which centre is the region.

Show that
$$\int_{0}^{2\pi} \frac{d\theta}{a + b\cos\theta} = \int_{0}^{2\pi} \frac{d\theta}{a + b\sin\theta} = \frac{2\pi}{\sqrt{\left(a^2 - b^2\right)}}, a > b > 0.$$

$$Z-Z-Z \qquad END$$