PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2019

(Second Semester)

Branch - MATHEMATICS

CALCULUS-II

Time: Three Hours Maximum: 75 Marks

SECTION-A (10 Marks)

Answer ALL questions ALL questions carry EQUAL marks $(10 \times 1 = 10)$ 1 If $\lim_{n \to \infty} a_n$ exists then the sequence is (i) divergent (ii) converges (iii) convergent (iv) diverges A geometric series $\sum ar^{n-1}$ converges then mention the limit of r. 2 (i) $|\mathbf{r}| < 1$ (ii) $|\mathbf{r}| > 1$ (iii) $|\mathbf{r}| \ge 1$ (iv) $|\mathbf{r}| = 1$ Identify the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ 3 conditionally convergent (ii) absolutely convergent (i) (iv) absolutely divergent (iii) divergent What is the interval of convergence of the series $\sum_{n=0}^{\infty} x^n$? 4 [-1, 1) (ii) (-1, 1) (iii) [-1, 1] (iv) (-1, 1]

Find the gradient vector field of
$$f(x, y) = x^2y - y^3$$
.

(i)
$$\nabla f(x,y) = 2xy\bar{i} + (x^2 - 3y^2)\bar{j}$$
 (ii) $\nabla f(x,y) = 2xy\bar{i} - (x^2 - 3y^2)\bar{j}$

(iii)
$$\nabla f(x,y) = 2xy\bar{j} + (x^2 - 3y^2)\bar{i}$$
 (iv) $\nabla f(x,y) = 2xy\bar{j} - (x^2 - 3y^2)\bar{i}$

Identify a curve that doesn't intersect itself anywhere between its end points. 6

- Transcendental curve
- (ii) Spiral curve

(iii) Simple

5

- (iv) Compound curve
- Indicate the parametric representations of surfaces are 7
 - not to be defined (ii) unique
- (iii) not unique (iv) none
- 8 For a closed curve C, mention the Stoke's theorem.

(i)
$$\int_{C} F.dr = 2\pi$$
 (ii) $\int_{C} F.T dr = 0$ (iii) $\int_{C} F.dr = \infty$ (iv) $\int_{C} F.dr = 0$

What is the expansion of tan (A+B+C+...)? 9

(i)
$$\frac{S_1 - S_3 - S_5 \dots }{1 + S_2 - S_4 \dots }$$

(ii)
$$\frac{S_1 - S_3 + S_5 \dots }{1 + S_2 - S_4 \dots }$$

(iii)
$$\frac{S_1 - S_3 + S_5 \dots }{1 - S_2 + S_4 \dots }$$

(iv)
$$\frac{S_1 - S_3 + S_5....}{1 + S_2 + S_4...}$$

Choose the expansion of sinh⁻¹x. 10

(i)
$$\log_e(x-\sqrt{x^2+1})$$

(ii)
$$\frac{1}{2} \log_e \left(\frac{1+x}{1-x} \right)$$

$$\sin x = (x + \sqrt{x^2 - 1})$$
 Giv) $\log (x + \sqrt{x^2 - 1})$

SECTION - B (25 Marks)

Answer ALL questions

ALL questions carry **EQUAL** Marks $(5 \times 5 = 25)$

Show that the sequence $a_n = \frac{n}{n^2 + 1}$ is decreasing.

- b Analyze whether the series $\sum_{n=1}^{\infty} \frac{5}{2n^2 + 4n + 3}$ converges or diverges.
- 12 a State the series $\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{3^n}$ is absolutely convergent.

- Bring out a power series representation for $\ell_n(1+x)$ and its radius of convergence.
- 13 a Evaluate $\int_C (2 + x^2 y) ds$, where C is the upper half of the unit circle $x^2 + y^2 = 1$.

- Analyze whether the vector field $F(x, y) = (x y)\tilde{i} + (x z)\tilde{j}$ is conservative.
- Find the flux of the vector field $F(x, y, z) = z\overline{i} + y\overline{j} + x\overline{k}$ across the unit sphere $x^2 + y^2 + z^2 = 1$.

- b Evaluate $\int_C F.dr$, where $F(x, y, z) = -y^2 \overline{i} + x \overline{j} + z^2 \overline{k}$ and C is the curve of intersection of the plane y + z = 2 and the cylinder $x^2 + y^2 = 1$.
- 15 a Expand $\sin^6 \theta$ in series of cosines of multiples of θ .

b If $\cos (x + iy) = \cos \theta + i \sin \theta$, prove that $\cos 2x + \cos h 2y = 2$.

SECTION -C (40 Marks) Answer ALL questions

ALL questions carry **EQUAL** Marks $(5 \times 8 = 40)$

- 16 a (i) Define bounded sequence.
 - (ii) State and prove monotonic sequence theorem.

- b (i) Examine the sum of series $\sum \frac{1}{n^3}$ by using the sum of the first 10 terms. Estimate the error involved in this approximation.
 - (ii) Discover the number of terms required to ensure that the sum is accurate to within 0.0005.
- 17 a Test the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+1}$ for convergence or divergence.

Find the radius of convergence and interval of convergence of the series

8 a Analyze the integral $\int_C y^2 dx + x dy$, where (i) $C = C_1$ is the line segment from (-5, -3) to (0, 2) and (ii) $C = C_2$ is the arc of the parabola $x = 4 - y^2$ from (-5, -3) to (0, 2)

OR

- b (i) Show that $F(x, y, z) = y^2 z^3 \overline{i} + 2xyz^3 \overline{j} + 3xy^2 z^2 \overline{k}$ is a conservative vector field.
 - (ii) Find a function f such that $F = \nabla f$.
- 19 a (i) Describe surface area.

0

(ii) Find the surface area of a sphere of radius a.

OR

- b Compute the surface integral $\iint_S x^2 ds$ where S is the unit sphere $x^2 + y^2 + z^2 = 1$.
- 20 a Express $\frac{\sin 6\theta}{\sin \theta}$ in terms of $\cos \theta$.

OR

b Point out $\sin \phi = \pm \sin^2 \alpha = \pm \sinh^2 \beta$ if $\cos \alpha \cosh \beta = \cos \phi$ and $\sin \alpha . \sinh \beta = \sin \phi$.

Z-Z-Z

END