Cont...

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2019

(First Semester)

Branch - MATHEMATICS

CALCULUS - I

I ir	ne:	Inree Hours Maximum: 75 Marks
		SECTION-A (10 Marks)
		Answer ALL questions
		ALL questions carry EQUAL marks $(10 \times 1 = 10)$
1		The curvature of a circle of radius a is
		(i) a^2 (ii) $\frac{1}{a^2}$ (iv) a^3
2.		The plane determined by the unit tangent vector and unit normal vector is called the plane.
		(i) Osculating (ii) Normal (iii)Orthogonal (iv) Binormal
3		If $f(x, y) \to L_1$ as $(x, y) \to (a, b)$ along a path C_1 and $f(x, y) \to L_2$ as $(x, y) \to (a, b)$
		along a path C_2 , where $L_1 \neq L_2$, then $\lim_{(x,y)\to(a,b)} f(x,y)$
		(i) Does not exist (ii) = 0 (iii) is finite (iv) = L_1
4		If $f(x, y) = x^3 + x^2y^3 - 2y^2$, then $f_x(2, 1) = $ (i) 32 (ii) 8 (iii) 16 (iv) 64
5		If $f(x, y) = \sin x + e^{xy}$, then $\nabla f(0, 1) = $ (i) (0, 2) (ii) (2, 0) (iii)(1, 0) (iv) (0, 1)
		(i) $(0, 2)$ (ii) $(2, 0)$ (iii) $(1, 0)$ (iv) $(0, 1)$
6		If the graph of a function f has a tangent plane at a local maximum or minimum, then the tangent plane must be (i) Perpendicular (ii) Parallel (iii) Vertical (iv) Horizontal
7		
7		The moment of the entire lamina about the x axis is
		(i) $\iint_{\mathbb{R}} xe(x,y)dA$ (ii) $\iint_{\mathbb{R}} yp(x,y)dA$ (iii) $\iint_{\mathbb{R}} p(x,y)dA$ (iv) $\iint_{\mathbb{R}} xyp(x,y)dA$
8		The moment of inertia about the origin is also called the (i) Second moment (ii) First moment (iii) Polar moment of inertia (iv) Third moment
9		The Jacobian of the transformation T given by $x = r \cos \theta$, $y = r \sin \theta$ is (i) r (ii) r^2 (iii) $\sin \theta$ (iv) $\cos \theta$
10		A solid region E is said to be of if it lies between the graphs of two continuous functions of x and y. (i) type I (ii) type II (iv) type IV
		(i) type i (ii) type ii (iii) type iii (iv) type iv
		SECTION - B (25 Marks) Answer ALL questions
		ALL questions carry $\hat{E}QUAL$ Marks (5 x 5 = 25)
11	a	Find the curvature of the parabola $y = x^2$ at the points $(0, 0)$, $(1, 1)$, $(2, 4)$. OR
	b	Find the curvature of the twisted cubic $r(t) = (t, t^2, t^3)$ at a general point and at $(0, 0, 0)$
12	a	 i) If Z = f(x, y) = x² + 3xy - y², find the differential d². ii) If x changes from 2 to 2.05 and y changes from 3 to 2.96, compare the value of Δz and dz.
		OR
	b	Find the tangent plane to the elliptic paraboloid $z = 2x^2 + y^2$ at the point $(1, 1, 3)$.
13	a	Find the extreme values of $f(x, y) = y^2 - x^2$. OR
	b	If $f(x, y, z) = x \sin yz$, (a) Find the gradient of f and (b) Find the directional derivative of f at $(1, 3, 0)$ in the direction of $v = i + 2j - k$.

14 a Find the moments of inertia I_x , I_y and I_o of a homogeneous disk D with density p(x, y)y) = p, center the origin, and radius a.

- b Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$ above the xy plane, and inside the cylinder $x^2 + y^2 = 2x$.
- Use spherical coordinates to find the volume of the sold that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = z$.

OR
A solid E lies within the cylinder $x^2 + y^2 = 1$, below the plane z = 4, and above the paraboloid $z = 1 - x^2 - y^2$. The density of any point is proportional to its distance from the axis of the cylinder. Find the mass of E.

SECTION -C (40 Marks)

Answer ALL questions

ALL questions carry EQUAL Marks $(5 \times 8 = 40)$

16 a Find the equations of the normal plane and osculating plane of the helix $r(t) = \cos t i + \sin t j + tk$ at the point $p(0, 1, \frac{\pi}{2})$.

- Prove that the curvature of the curve given by the vector function r is $\eta(t) = \frac{|r'(t) \times r''(t)|}{|r'(t)|^3}.$
- 17 a Show that $(x, y)^{\lim} \rightarrow (0, 0) \frac{x^2 y^2}{x^2 + y^2}$ does not exist.

- b i) Calculate f_{xxyz} if $f(x, y, z) = \sin(3x + yz)$.
 - ii) Show that the function $u(x, y) = ex \sin y$ is a solution of Laplace's equation.
- Find the points on the sphere $x^2 + y^2 + z^2 = 4$ that are closest to and farthest from the point (3, 1, -1).

Find the shortest distance from the point (1, 0, -2) to the plane x + 2y + z = 4.

The manager of a movie theater determines that the average time movie-goers wait in line to buy a ticket for this week's film is 10 minutes and the average time they wait to buy popcorn is 5 minutes. Assuming that the waiting times are independent, find the probability that a movie goes waits a total of less than 20 minutes before taking his or her seat.

OR

- The density at any point on a semicircular lamina is proportional to the distance from the center of the circle. Find the center of mass of the lamina.
- 20 a Express the iterated integral $\int_{0}^{1} \int_{0}^{x^2} \int_{0}^{y} f(x, y, z) dz dy dx$ as a triple integral and then rewrite it as an iterated integral in a different order, integrating first with respect to x, then z, and then y.

OR

b Evaluate $\iiint \sqrt{x^2 + z^2} dv$, where E is the region bounded by the paraboloid $y = x^2 + z^2$ and the plane y = 4.