PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2019

(Sixth Semester)

Branch - MATHEMATICS

<u>ALGEBRA - II</u>

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 Define symmetric and skew-symmetric matrices and also give an example.
- 2 Define an orthogonal matrix and give an example.
- The set of all real polynomials of degree $n \ge 1$ does not form a vector space over R. Why?
- 4 Define base.
- 5 Define inner product space.
- 6 Prove that $\|\alpha u\| = |\alpha| \|u\|$.
- 7 Define rank of a matrix.
- 8 Define characteristic polynomial.
- If $T \in A(v)$ and if $S \in A(v)$ is regular then $r(T) = r(ST S^{-1})$.
- 10 Define characteristic root.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

Show that any square matrix is expressible as the sum of a symmetric and a Skew-symmetric matrix in a unique way.

OR

- b Show that the matrix $U = \frac{1}{5} \begin{pmatrix} -1+2i & -4-2i \\ 2-4i & -2-i \end{pmatrix}$ is unitary.
- 12 a If V is the internal direct sum of U_1, \ldots, U_n then prove that V is isomorphic to the external direct sum of U_1, \ldots, U_n .

OR

- b If L(S) is a subspace of V.
- 13 a If $\{v_i\}$ is an orthonormal set, then prove that the vectors in $\{v_i\}$ are linearly independent. If $w = \alpha_1 \ v_1 + \ldots + \alpha_n \ v_n$ then prove that $\alpha_i = (w, v_i)$ for $i = 1, 2, \ldots n$.

OR

- b If $u, v \in v$ and $\alpha, \beta \in F$ then prove that $(\alpha u + \beta v, \alpha u + \beta v) = \alpha \overline{\alpha}(u, u) + \alpha \overline{\beta}(u, v) + \overline{\alpha} \beta(v, u) + \beta \overline{\beta}(v, v).$
- 14 a Determine the characteristic roots of the matrix $A = \begin{pmatrix} 1 & -1 & 2 \\ -2 & 1 & 3 \\ 3 & 2 & -3 \end{pmatrix}$.

OR

b Prove that the characteristic root of a hermitian matrix are all real.

15 a If v is finite dimensional over F and if $T \in A(V)$ is singular then prove that there exits an $S \neq 0$ in A(v) such that ST = TS = 0.

OR

b Prove that an element $\lambda \in F$ is a characteristic root of $T \in A(V)$ if and only if for some $v \neq 0$ in v, $vT = \lambda v$.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry **EQUAL** Marks $(3 \times 10 = 30)$

- 16 Let A and B be complex matrices such that the product AB is defined. Then prove that
 - (i) $\overline{AB} = \overline{A} \overline{B}$

(ii)
$$(AB)^*=B^*A^*$$

(iii)
$$(\overline{A})^{-1} = (\overline{A^{-1}})$$
 (iv) $(A^*)^{-1} = (A^{-1})^*$

$$(iv) (A^*)^{-1} = (A^{-1})^*$$

- If $v_1, \ldots, v_n \in V$ are linearly independent then prove that every element in 17 linear span has unique representation in the form $\lambda_1 v_1 + \dots + \lambda_n v_n$ with the $\lambda_i \in F$.
- 18 If V is finite dimensional and $v \neq 0 \in v$ then prove that there is an element $f \in V$ such that $f(v) \neq 0$.
- Verify the Cayley Hamilton theorem for the matrix $A = \begin{pmatrix} 1 & -1 & 2 \\ -2 & 1 & 3 \\ 3 & 2 & -3 \end{pmatrix}$ 19 and hence find its inverse.
- If V is finite dimensional over F then for S, $T \in A(V)$ prove that 20 .
 - i) $r(ST) \le r(T)$
- ii) $r(TS) \le r(T)$
- iii) r(ST) = r(TS) = r(T) for S regular in A(V).

Z-Z-Z

END