PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2019

(Fifth Semester)

Branch - MATHEMATICS

REAL ANALYSIS

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer **ALL** questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 Define an equivalence relation.
- 2 Prove that every neighborhood is an open set.
- 3 Define open cover and compact set.
- 4 Define separated and connected.
- 5 Define convergent sequence.
- 6 Define Cauchy sequence.
- 7 Define continuous function.
- Write the function of which is continuous at x = 0 and has a discontinuity of the second kind.
- 9 Define local maximum.

Find the derivative of
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$
.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

Define countable and uncountable sets and prove that every infinite subset of a countable set A is countable.

OR

- b Prove that a set E is open if and only if its complement is closed.
- Suppose $K \subset Y \subset X$. Then prove that K is compact relative to X if and only if K is compact relative to Y.

OR

- b Prove that a subset E of the real line R is connected if and only if it has the following property. If $x \in E$, $y \in E$, and x < z < y, then $z \in E$.
- Prove that the sub sequential limits of a sequence $\{p_n\}$ in a metric space x form a closed subset of x.

OR

- b Suppose $\{S_n\}$ is monotonic. Then prove that $\{S_n\}$ converges if and only if it is bounded.
- 14 a Suppose f is a continuous mapping of a compact metric space X into metric space Y. then prove that f(x) is compact.

OR

b Prove that if f is a continuous mapping of a metric space x into a metric space Y, and if E is a connected subset of x, then f(E) is connected.

- 15 a Let f be defined on [a, b]. Prove that if f has a local maximum at a point $x \in (a, b)$, and if f'(x) exists, then $f'(x) \le 0$.
 - Suppose f is a real differentiable function on [a, b] and suppose f'(a) $< \lambda <$ b f'(b). Then prove that there is a point $x \in (a, b)$ such that $f'(x) = \lambda$.

SECTION - C (30 Marks) Answer any THREE Questions

ALL Questions Carry **EQUAL** Marks (3 x 10 - 30)

- 16 a) Let $\{E\alpha\}$ be a (finite or infinite) collection of sets $E\alpha$. Then prove that $\left(\bigcup_{\alpha} E_{\alpha}\right)^{c} = \bigcap_{\alpha} \left(E_{\alpha}^{c}\right)$
 - Suppose Y C X. Prove that a subset E of Y is open relative to Y if and b) only if $E = Y \cap G$ for some open subset G of X.
- 17 Prove that every k-cell is compact.
- Prove that for any sequence $\{C_n\}$ of positive numbers, 18

$$\lim_{n \to \infty} \inf \frac{C_{n+1}}{C_n} \le \lim_{n \to \infty} \inf \sqrt[n]{C_n},$$

$$\lim_{n \to \infty} \sup \sqrt[n]{C_n} \le \lim_{n \to \infty} \sup \frac{C_{n+1}}{C_n}$$

$$\lim_{n \to \infty} \sup \sqrt[n]{C_n}, \le \lim_{n \to \infty} \sup \frac{C_{n+1}}{C_n}$$

- 19 Let f be a continuous mapping of a compact metric space X into a metric space Y. Then prove that f is uniformly continuous on X.
- 20 State and prove the generalized mean value theorem.

Z-Z-Z

END