Show that the transform of $e^{-\frac{x^2}{2}}$ is $e^{-\frac{s^2}{2}}$ by finding the Fourier transform of $e^{-a^2x^2}$, a > 0.

- Find Fourier cosine transform of $f(x) = \begin{bmatrix} \cos & x & \text{in } 0 < x < a \\ 0 & x \ge a \end{bmatrix}$. b
- Solve $\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$, $-\infty < x < \infty$, $t \ge 0$ with conditions u(x, 0) = f(x), $\frac{\partial u}{\partial t}(x,0) = g(x)$ and assuming $u, \frac{\partial u}{\partial x} \to 0$ as $x \to \pm \infty$.
 - Find f(x) if its finite Fourier cosine transform is $\frac{2\iota^3}{r^2\pi^2}(-1)^p$ for p = 1, 2, 3... and is $\frac{1^3}{2}$ for p = 0 : 0 < x < 1.

<u>SECTION - C (30 Marks)</u> Answer any THREE Questions

ALL Questions Carry **EQUAL** Marks $(3 \times 10 = 30)$

- Solve $z = p^2 + q^2$ Solve $p x^2 = q + y^2$. 16 i)
- Solve $z^2 = pqxy$ by charpit's method. 17
- Obtain Fourier series for the function $f(x) = x \sin x$ in $0 \le x \le 2\pi$. 18
- 19 Find the Fourier transform of f(x) given by

$$f(x) = \begin{cases} 1 & \text{for } |x| < a \\ 0 & \text{for } |x| > a > 0 \end{cases}$$

and hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$ and $\int_{0}^{\infty} \frac{\sin as \cos sx}{s} ds$.

- 20 Find the finite Fourier sine transform of f(x) = 1 in $(0, \pi) = 1$ in $(0, \pi)$. Use the inversion theorem and find Fourier sine series for f(x) = 1 in $(0, \pi)$

 - (i) $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots = \frac{\pi}{4}$ (ii) $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$

Show that the transform of $e^{-\frac{x^2}{2}}$ is $e^{-\frac{s^2}{2}}$ by finding the Fourier transform 14 a of $e^{-a^2x^2}$, a > 0.

- Find Fourier cosine transform of $f(x) = \begin{bmatrix} \cos & x & \text{in } 0 < x < a \\ 0 & x \ge a \end{bmatrix}$. b
- Solve $\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$, $-\infty < x < \infty$, $t \ge 0$ with conditions u(x, 0) = f(x), $\frac{\partial u}{\partial t}(x,0) = g(x) \text{ and assuming } u, \ \frac{\partial u}{\partial x} \to 0 \ \text{ as } x \to \pm \infty \,.$
 - Find f(x) if its finite Fourier cosine transform is $\frac{2\iota^3}{r^2\pi^2}(-1)^p$ for p = 1, 2, 3... and is $\frac{1^3}{2}$ for p = 0 : 0 < x < 1.

<u>SECTION - C (30 Marks)</u> Answer any THREE Questions

ALL Questions Carry **EQUAL** Marks $(3 \times 10 = 30)$

- Solve $z = p^2 + q^2$ Solve $p x^2 = q + y^2$. 16 i)
- Solve $z^2 = pqxy$ by charpit's method. 17
- Obtain Fourier series for the function $f(x) = x \sin x$ in $0 \le x \le 2\pi$. 18
- 19 Find the Fourier transform of f(x) given by

$$f(x) = \begin{cases} 1 & \text{for } |x| < a \\ 0 & \text{for } |x| > a > 0 \end{cases}$$

and hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$ and $\int_{0}^{\infty} \frac{\sin as \cos sx}{s} ds$.

- 20 Find the finite Fourier sine transform of f(x) = 1 in $(0, \pi) = 1$ in $(0, \pi)$. Use the inversion theorem and find Fourier sine series for f(x) = 1 in $(0, \pi)$ Hence prove

 - (i) $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots = \frac{\pi}{4}$ (ii) $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$