LANIACOO

PSG COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2019

(Third Semester)

Branch - MATHEMATICS

MECHANICS-I (STATICS)

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry **EQUAL** marks

 $(10 \times 2 = 20)$

- 1 Define Thrust.
- 2 State parallelogram law of forces.
- 3 Define moment of a force about a point.
- What is the magnitude of the resultant of two like parallel forces and its direction?
- 5 When a couple is positive or negative?
- 6 Define axis of a couple.
- State the necessary and sufficient conditions that a system of coplanar forces acting on a rigid body may be in equilibrium.
- 8 State the second form of the conditions of equilibrium.
- 9 Define centre of gravity of a body.
- Where is the centre of gravity of a uniform parallelogram and uniform solid hemisphere?

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry EQUAL Marks $(5 \times 5 = 25)$

The resultant of two forces P and Q acting at an angle α is equal to (2m+1) $\sqrt{P^2+Q^2}$. When they act on angle 90° - θ , the resultant is (2m-1) $\sqrt{P^2+Q^2}$. Prove that $\tan\theta=\frac{m-1}{m+1}$.

OR

- b State and prove the theory on resultant of any number of coplanar forces acting at a point.
- 12 a Obtain the resultant of two like parallel forces acting on a rigid body.

OR

- b State and prove Varigon's theory on moments.
- 13 a Prove that two couples in the same plane and whose moments are equal and of same sign are equivalent to one another.

 $\cap R$

- b Prove that a force acting at any point A of a body is equivalent to an equal and parallel force acting at any other arbitrary point B of the body, together with a couple.
- 14 a Obtain the equation to the line of action of the resultant.

OR

- Forces F₁, F₂, F₃, F₄, F₅, F₆ act along the sides of a regular hexagon taken in order. Show that they will be in equilibrium if (i) F₁+F₂+F₃+F₄+F₅+F₆=0 and (ii) F₁-F₄=F₃-F₆=F₅-F₂.
- 15 a Determine the centre of gravity uniqueness.

OR

b Obtain the centre of gravity of a thin plate in the form of a parallelogram.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry EQUAL Marks $(3 \times 10 = 30)$

- State and prove Lami's theorem. Prove that if A, B are fixed points on horizontal line at a distance C apart to a fine tight strings AC and BC of length b and a respectively. Show that the tensions of the strings are in the ratio $b(a^2 + c^2 b^2)$: a $(b^2 + c^2 a^2)$.
- 17 a Find the condition of equilibrium of three coplanar parallel forces.
 - Two like parallel forces P and Q act on a rigid body at A and B respectively. (i) If Q be changed to $\frac{P^2}{Q}$, show that the line of action of the resultant is the same as it would be if the forces are simply interchanged (ii) If P and Q be interchanged in position, show that the point of application of the resultant will be displayed along AB through a distance d where $d = \frac{P Q}{P + Q}AB$.
- Prove that if two couples whose moments are equal and opposite act in the same plant upon a rigid body then they balance one another.
- A uniform beam of length ℓ and weight w hangs from a fixed point of two strings of length a and b. Prove that the inclination of the rod to the

horizon is
$$\sin^{-1} \left[\frac{a^2 - b^2}{\ell \sqrt{2(a^2 + b^2) - \ell^2}} \right]$$

Obtain the centre of gravity of a hollow hemisphere.

Z-Z-Z

END