PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2019

(Third Semester)

Branch - MATHEMATICS

MATHEMATICAL STATISTICS - I

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer ALL questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 Define sample space and event.
- 2 State multiplication theorem for two events.
- 3 Define continuous random variable.
- 4 Define mathematical expectation.
- 5 Show that $M_{cx}(t) = m_x(tc)$.
- 6 Define marginal distribution.
- 7 Define binomial distribution.
- 8 Write any two assumptions of Poisson distribution.
- 9 Write any two applications of t distribution.
- 10 Define regression.

SECTION - B (25 Marks)

Answer **ALL** Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

11 a If A and B are independent events, then prove that A and B are independent.

OR

- b Two students X and Y work independently on a particular problem. The probability that X will solve the problem is ¾ and the probability Y will solve it is 2/3. What is the probability that the problem will be solved?
- 12 a Let X be a random variable with the following probability distribution

x: -3

6

P(x): 1/6

1/2.

1/3

Find E(X), $E(X^2)$ and Var(X).

OR

b The pdf is given by

$$f(x) = Ax^2 \quad 0 < x < 1$$

= 0 otherwise

Find the value of A and find $P(0.2 \le x \le 0.5)$.

Let the random variable X assume the value r with the probability law $P(X = r) = q^{x-1}p$; x = 1, 2, 3, ... Find the mgf of X.

b The joint density function of x, y is given by

f(x, y) = 2; 0 < x < 1, 0 < y < x

Find the marginal density function of X and Y?

Obtain the mgf of Binomial distribution. 14 a Find the mean of normal distribution. b Calculate the Karl Pearson's coefficient of correlation for the following data 15 a 10 X 2 Y 20 18 16 14 12 OR Calculate the spearman rank correlation coefficient for the following data b 9 1 X 7 3 6 8 5 10 Y 6 3 10 5 2 4 7 1 8 9 SECTION - C (30 Marks) Answer any **THREE** Questions **ALL** Questions Carry **EQUAL** Marks $(3 \times 10 = 30)$ State and Prove addition theorem for three events. 16 17 A random variable X ahs the following probability distribution \mathbf{x} : 3 4 5 6 7 8 k 3k 5k 7k 9k 11k 13k 15k p(x): 17k (i) Find the value of k (ii) Find P(x<3) and P(x>3) (iii) $P(0 \le x \le 5)$. The joint pdf of two random variable X & Y is given by 18 $0 \le x \le 2$, $-x \le y \le x$ f(x, y) = k x(x-y)Find the value 'k' and marginal density function of X and Y. 19 Derive the recurrence relationship of binomial distribution with moments $\mu_{r+1} = pq \left| nr\mu_{r-1} + \frac{d\mu r}{4\pi} \right|$ 20 Find the two regression equations from the data given below X 2 3 4 Y 8 9 10 12 11 13 14

Z-Z-Z

END