PSG COLLEGE OF ARTS & SCIENCE

(AUTONOMOUS)

BSc DEGREE EXAMINATION MAY 2019

(Sixth Semester)

Branch - MATHEMATICS

GRAPH THEORY

Time: Three Hours

Maximum: 75 Marks

SECTION-A (20 Marks)

Answer **ALL** questions

ALL questions carry EQUAL marks

 $(10 \times 2 = 20)$

- 1 What is simple graph?
- 2 Define regular graph.
- What you mean pendant vertices in a tree?
- 4 Define rooted trees.
- 5 What is planar graph?
- 6 Define infinite region.
- 7 Define binary matrix.
- 8 Write any two property of path matrix.
- 9 Define complete diagraphs.
- 10 Define relation matrices.

SECTION - B (25 Marks)

Answer ALL Questions

ALL Questions Carry **EQUAL** Marks $(5 \times 5 = 25)$

11 a Prove that the number of vertices of odd degree in a graph is always even.

OR

- b Define walks, paths and circuits with examples.
- 12 a Prove that a tree with n vertices has n-1 edges.

OF

- b Prove that every connected graphs has atleast one spanning tree.
- 13 a Write the properties of Kuratowski graph.

OR

- b Prove for any simple connected planar graph with f regions, n vertices and e edges, $e \ge \frac{3}{2}f$ and $e \le 3n 6$.
- 14 a Prove that the reduced incidence matrix of a tree is non-singular.

OR

- b Write the relationships among A_f , B_f and C_f with usual notations.
- 15 a Define circuit matrix of a diagraph with an example.

OR

b Define (i) Simple digraphs (ii) Asymmetric digraphs and (iii) Symmetric digraphs.

SECTION - C (30 Marks)

Answer any THREE Questions

ALL Questions Carry **EQUAL** Marks $(3 \times 10 = 30)$

- Prove that a simple graph with n vertices and k components can have atmost (n-k)(n-k+1)/2 edges.
- Prove that every tree has either one or two centres.
- Prove that a connected planae graph with n vertices and e edges has e-n+2 regions.
- Prove that if B is a circuit matrix of a connected graph G with e edges and n vertices then rank of B = e-n+1.
- 20 Prove that an arborescence is a tree in which ever vertex other than the root has an in-degree of exactly one.